Pregunta
upstudy study bank question image url

2. Answer the following questions. A random variable \( X \) has a mean 8 , a variance 9 , and an unknown probability distribution. Using Chebyshev's theorem, find the lower bound of \( P(|X-8| \geq 6) \).

Ask by West Warner. in Pakistan
Jan 22,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The lower bound of \( P(|X-8| \geq 6) \) is 0.25.

Solución

To find the lower bound of \( P(|X-8| \geq 6) \) using Chebyshev's theorem, we first need to understand the theorem and the given information. Chebyshev's theorem states that for any random variable \( X \) with mean \( \mu \) and variance \( \sigma^2 \), the following inequality holds: \[ P(|X - \mu| \geq k) \leq \frac{\sigma^2}{k^2} \] where \( k \) is a positive real number. Given that the mean of \( X \) is 8 and the variance is 9, we can substitute these values into the inequality: \[ P(|X - 8| \geq 6) \leq \frac{9}{6^2} \] Now, we can calculate the lower bound of \( P(|X-8| \geq 6) \) using the inequality. Calculate the value by following steps: - step0: Calculate: \(\frac{9}{6^{2}}\) - step1: Rewrite the expression: \(\frac{9}{3^{2}\times 2^{2}}\) - step2: Rewrite the expression: \(\frac{3^{2}}{3^{2}\times 2^{2}}\) - step3: Reduce the fraction: \(\frac{1}{2^{2}}\) - step4: Evaluate the power: \(\frac{1}{4}\) The lower bound of \( P(|X-8| \geq 6) \) using Chebyshev's theorem is 0.25.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

Chebyshev's theorem tells us that for any random variable, the proportion of observations that lie within \( k \) standard deviations of the mean is at least \( 1 - \frac{1}{k^2} \). In this case, the mean \( \mu = 8 \) and the variance \( \sigma^2 = 9 \), so the standard deviation \( \sigma = 3 \). To find \( P(|X - 8| \geq 6) \), we consider \( |X - 8| \geq 6 \) which is equivalent to \( |X - 8| < 6 \). Here, we define \( k \) as the number of standard deviations: \( k = \frac{6}{3} = 2 \). Now applying Chebyshev's theorem: \[ P(|X - 8| < 6) \geq 1 - \frac{1}{k^2} = 1 - \frac{1}{2^2} = 1 - \frac{1}{4} = \frac{3}{4}. \] Thus, the probability of being outside that range is: \[ P(|X - 8| \geq 6) \leq 1 - P(|X - 8| < 6) \leq 1 - \frac{3}{4} = \frac{1}{4}. \] So, the lower bound of \( P(|X - 8| \geq 6) \) is at least \( \frac{1}{4} \).

preguntas relacionadas

Latest Probability Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad