Pregunta
AZ A curve has the equation
.
(i) Show that the lowest point on the
curve has coordinates
.
(ii) Find the
-coordinates of the
points at which the curve intersects
the
-axis.
(i) Show that the lowest point on the
curve has coordinates
(ii) Find the
points at which the curve intersects
the
Ask by Griffiths Chang. in Singapore
Mar 22,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
(i) The lowest point on the curve is at
.
**(ii) The curve intersects the
-axis at
and
.
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Como
Extra Insights
To find the lowest point on the curve described by the equation
, we can use the vertex formula for a quadratic function. The vertex
-coordinate is given by
, where
and
. Substituting, we get
. Now, substituting
back into the equation, we have:
Thus, the lowest point on the curve is indeed
.
Next, to find the
-coordinates where the curve intersects the
-axis, set
:
We can simplify this by multiplying through by -1:
Now we apply the quadratic formula
:
The
-coordinates of the intersection points are
and
.
preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium