Pregunta
upstudy study bank question image url

Jim invested \( \$ 5600 \) in an account that pays an annual interest rate of \( 2.2 \% \), compounded monthly. Answer e list of financial formulas. (a) Find the amount in the account after one year, assuming no withdrawals are made. Do not round any intermediate computations, and round your answer to the nearest cent. \( \$ \square \) (b) Find the effective annual interest rate, expressed as a percentage. Do not round any intermediate computations, and round your answer to the nearest hundredth of a percent. \( \square \% \)

Ask by Willis Whittaker. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

(a) The amount in the account after one year is \$5,724.45. (b) The effective annual interest rate is 2.22%.

Solución

To find the amount in the account after one year, we can use the formula for compound interest: \[ A = P \left(1 + \frac{r}{n}\right)^{nt} \] where: - \( A \) is the amount in the account after \( t \) years, - \( P \) is the principal amount (initial investment), - \( r \) is the annual interest rate, - \( n \) is the number of times the interest is compounded per year, - \( t \) is the time in years. Given: - \( P = \$5600 \), - \( r = 2.2\% = 0.022 \), - \( n = 12 \) (compounded monthly), - \( t = 1 \) year. Substitute the values into the formula: \[ A = 5600 \left(1 + \frac{0.022}{12}\right)^{12 \cdot 1} \] Now, we can calculate the amount in the account after one year. Calculate the value by following steps: - step0: Calculate: \(5600\left(1+\frac{0.022}{12}\right)^{12}\) - step1: Divide the terms: \(5600\left(1+\frac{11}{6000}\right)^{12}\) - step2: Add the numbers: \(5600\left(\frac{6011}{6000}\right)^{12}\) - step3: Simplify: \(5600\times \frac{6011^{12}}{6000^{12}}\) - step4: Rewrite the expression: \(400\times 14\times \frac{6011^{12}}{6000^{12}}\) - step5: Rewrite the expression: \(400\times 14\times \frac{6011^{12}}{400^{12}\times 15^{12}}\) - step6: Reduce the numbers: \(14\times \frac{6011^{12}}{400^{11}\times 15^{12}}\) - step7: Rewrite the expression: \(2\times 7\times \frac{6011^{12}}{400^{11}\times 15^{12}}\) - step8: Rewrite the expression: \(2\times 7\times \frac{6011^{12}}{16^{11}\times 25^{11}\times 15^{12}}\) - step9: Rewrite the expression: \(2\times 7\times \frac{6011^{12}}{2^{44}\times 25^{11}\times 15^{12}}\) - step10: Reduce the numbers: \(7\times \frac{6011^{12}}{2^{43}\times 25^{11}\times 15^{12}}\) - step11: Multiply the fractions: \(\frac{7\times 6011^{12}}{2^{43}\times 25^{11}\times 15^{12}}\) The amount in the account after one year is approximately $5724.45. Now, to find the effective annual interest rate, we can use the formula: \[ \text{Effective Annual Interest Rate} = \left(1 + \frac{r}{n}\right)^n - 1 \] Substitute the values into the formula: \[ \text{Effective Annual Interest Rate} = \left(1 + \frac{0.022}{12}\right)^{12} - 1 \] Now, we can calculate the effective annual interest rate. Calculate the value by following steps: - step0: Calculate: \(\left(1+\frac{0.022}{12}\right)^{12}-1\) - step1: Divide the terms: \(\left(1+\frac{11}{6000}\right)^{12}-1\) - step2: Add the numbers: \(\left(\frac{6011}{6000}\right)^{12}-1\) - step3: Rewrite the expression: \(\frac{6011^{12}}{6000^{12}}-1\) - step4: Reduce fractions to a common denominator: \(\frac{6011^{12}}{6000^{12}}-\frac{6000^{12}}{6000^{12}}\) - step5: Transform the expression: \(\frac{6011^{12}-6000^{12}}{6000^{12}}\) The effective annual interest rate is approximately 2.22%. Therefore, the answers are: (a) The amount in the account after one year is $5724.45. (b) The effective annual interest rate is 2.22%.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the amount in the account after one year with monthly compounding, we can use the formula: \[ A = P \left(1 + \frac{r}{n}\right)^{nt} \] where: - \( A \) is the amount after time \( t \), - \( P \) is the principal amount (\$5600), - \( r \) is the annual interest rate (0.022), - \( n \) is the number of times interest is compounded per year (12 for monthly), - \( t \) is the time in years (1). Plugging in the values: \[ A = 5600 \left(1 + \frac{0.022}{12}\right)^{12 \times 1} \] \[ A = 5600 \left(1 + 0.00183333\right)^{12} \] \[ A = 5600 \left(1.00183333\right)^{12} \] \[ A \approx 5600 \times 1.02226434 \approx 5724.08 \] So after one year, the amount in the account is approximately \( \boxed{5724.08} \). For the effective annual interest rate (EAR), we can use the formula: \[ EAR = \left(1 + \frac{r}{n}\right)^{n} - 1 \] Substituting the values: \[ EAR = \left(1 + \frac{0.022}{12}\right)^{12} - 1 \] \[ EAR = \left(1.00183333\right)^{12} - 1 \] \[ EAR \approx 1.02226434 - 1 \approx 0.02226434 \] Converting this to a percentage: \[ EAR \approx 0.02226434 \times 100 \approx 2.23\% \] Thus, the effective annual interest rate is approximately \( \boxed{2.23\%} \).

preguntas relacionadas

Latest Economics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad