Pregunta
upstudy study bank question image url

Find the GCF for the following list. \[ 28,12,40 \]

Ask by Johnson Murray. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The GCF of 28, 12, and 40 is 4.

Solución

To find the **Greatest Common Factor (GCF)** of the numbers **28, 12, and 40**, we'll use the **prime factorization method**. Here's a step-by-step breakdown: ### Step 1: Prime Factorization 1. **28** - 28 ÷ 2 = 14 - 14 ÷ 2 = 7 - 7 is a prime number. - **Prime Factors:** 2² × 7 2. **12** - 12 ÷ 2 = 6 - 6 ÷ 2 = 3 - 3 is a prime number. - **Prime Factors:** 2² × 3 3. **40** - 40 ÷ 2 = 20 - 20 ÷ 2 = 10 - 10 ÷ 2 = 5 - 5 is a prime number. - **Prime Factors:** 2³ × 5 ### Step 2: Identify Common Prime Factors - The common prime factor among all three numbers is **2**. - The smallest power of 2 present in all three factorizations is **2²**. ### Step 3: Calculate the GCF - **GCF = 2² = 4** ### Conclusion The **Greatest Common Factor (GCF)** of **28, 12, and 40** is **4**.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the GCF (Greatest Common Factor) of 28, 12, and 40, we first look at the factors of each number. The factors of 28 are 1, 2, 4, 7, 14, and 28; the factors of 12 are 1, 2, 3, 4, 6, and 12; and the factors of 40 are 1, 2, 4, 5, 8, 10, 20, and 40. The common factors among these three numbers are 1, 2, and 4, with 4 being the greatest. So, the GCF of 28, 12, and 40 is **4**. For a fun fact, did you know that the method of finding GCF is as ancient as mathematics itself? The Greeks, particularly Euclid, devised a systematic way to calculate it thousands of years ago, which is still relevant today! In real-life applications, understanding GCF can save you time and resources, especially when dividing things into smaller, or equal parts. For instance, if you want to evenly distribute 28, 12, and 40 oranges among friends, using the GCF helps you find out how many friends can receive the same number without any leftovers!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad