c) The force of interest at time \( t \) is given by: \[ \delta(t)=\left\{\begin{array}{cl}0.01+0.01 t, & 0 \leq t<4 \\ 0.15-0.003 t, & 4 \leq t<6 \\ 0.06 & t \geq 6\end{array}\right. \] 1. Find an expression for the value at time \( t=0 \) of a payment of 100 at time \( t \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
To find the present value of a payment of 100 at time \( t \) based on the force of interest function \( \delta(t) \), we can use the formula: \[ V(0, t) = 100 e^{-\int_0^t \delta(s) \, ds} \] We'll compute the integral of \( \delta(t) \) over different intervals. 1. For \( 0 \leq t < 4 \): \[ \int_0^t \delta(s) \, ds = \int_0^t (0.01 + 0.01s) \, ds = \left[0.01s + 0.005s^2\right]_0^t = 0.01t + 0.005t^2 \] Thus, the present value is: \[ V(0, t) = 100 e^{-(0.01t + 0.005t^2)} \] 2. For \( 4 \leq t < 6 \): We need to split the integral: \[ \int_0^4 \delta(s) \, ds + \int_4^t (0.15 - 0.003s) \, ds \] First, compute the first part: \[ \int_0^4 \delta(s) \, ds = 0.01 \cdot 4 + 0.005 \cdot 16 = 0.04 + 0.08 = 0.12 \] Now compute the second part: \[ \int_4^t (0.15 - 0.003s) \, ds = \left[0.15s - 0.0015s^2\right]_4^t = (0.15t - 0.0015t^2) - (0.6 - 0.024) = 0.15t - 0.0015t^2 + 0.576 \] Adding them together gives: \[ \int_0^t \delta(s) \, ds = 0.12 + 0.15t - 0.0015t^2 + 0.576 = 0.15t - 0.0015t^2 + 0.696 \] Thus, the present value is: \[ V(0, t) = 100 e^{-(0.15t - 0.0015t^2 + 0.696)} \] 3. For \( t \geq 6 \): We again split the integral: \[ \int_0^4 \delta(s) \, ds + \int_4^6 (0.15 - 0.003s) \, ds + \int_6^t 0.06 \, ds \] We have already found \( \int_0^4 \delta(s) \, ds = 0.12 \) and compute: \[ \int_4^6 (0.15 - 0.003s) \, ds = \left[0.15s - 0.0015s^2\right]_4^6 \] Calculating: \[ = (0.15 \cdot 6 - 0.0015 \cdot 36) - (0.6 - 0.024) = (0.9 - 0.054) - 0.576 = 0.27 \] Now check the third part: \[ \int_6^t 0.06 \, ds = 0.06(t - 6) \] Adding these gives: \[ \int_0^t \delta(s) \, ds = 0.12 + 0.27 + 0.06(t - 6) = 0.39 + 0.06t - 0.36 = 0.06t + 0.03 \] Thus, the present value is: \[ V(0, t) = 100 e^{-(0.06t + 0.03)} \] In summary, we have: - For \( 0 \leq t < 4 \): \[ V(0, t) = 100 e^{-(0.01t + 0.005t^2)} \] - For \( 4 \leq t < 6 \): \[ V(0, t) = 100 e^{-(0.15t - 0.0015t^2 + 0.696)} \] - For \( t \geq 6 \): \[ V(0, t