11. Solve the following. In finding derivative, use the defintion. 1. Find the slope of the tangent line to the graph of the furction \( y=x^{2}-3 x+4 \) at \( (1,-2) \). Wrile the equation of the tangent line. Moreover, Find and solue the slope and equation of the Normal line 2. Find the slope of the tangent line to the graph of the function \( y=x^{2}-5 \) at \( (2,3) \). Wrile the equation of the tangent line. Moreover, Find and solve the slope and eavation of. the normal line.
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
To find the slope of the tangent line using the definition of the derivative, we’ll apply \( f(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} \). 1. For \( y = x^{2} - 3x + 4 \) at \( (1, -2) \): - Calculate \( f'(1) = \lim_{h \to 0} \frac{(1+h)^2 - 3(1+h) + 4 - (-2)}{h} = -1 \). - The slope of the tangent line is \(-1\). The equation: \( y + 2 = -1(x - 1) \), or \( y = -x + 1 \). - For the normal line (perpendicular slope \(1\)): \( y + 2 = 1(x - 1) \) leads to \( y = x - 3 \). 2. For \( y = x^{2} - 5 \) at \( (2, 3) \): - Calculate \( f'(2) = \lim_{h \to 0} \frac{(2+h)^2 - 5 - 3}{h} = 4 \). - The slope of the tangent line is \(4\). The equation: \( y - 3 = 4(x - 2) \), leading to \( y = 4x - 5 \). - For the normal line (slope \(-\frac{1}{4}\)): \( y - 3 = -\frac{1}{4}(x - 2) \) results in \( y = -\frac{1}{4}x + \frac{14}{4} \) or \( y = -\frac{1}{4}x + \frac{7}{2} \).