Follow the directions. Use the drawing for \#18-19. 18. What is the area of one triangle with a base of \( 12^{\text {" }} \) and a height of \( 5 \sqrt{6} \) inches? How many triangles make up the figure?
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
To calculate the area of a triangle, you can use the formula: \( \text{Area} = \frac{1}{2} \times \text{base} \times \text{height} \). Plugging in your values, we get: \[ \text{Area} = \frac{1}{2} \times 12 \times 5\sqrt{6} = 6 \times 5\sqrt{6} = 30\sqrt{6} \text{ square inches.} \] If the figure consists of triangles, you could typically expect to see them arranged in some pattern. Let’s say there are 6 triangles to make up the figure (though you would need the drawing to confirm this). So, one triangle has an area of \( 30\sqrt{6} \) square inches, and the total area would then depend on how many triangles you find in the drawing.