Pregunta
upstudy study bank question image url

6-64. Kevin and his little sister, Katy, are trying to solve the system of equations shown below. Kevin thinks that using the Substitution Method should give a new equation of 3 \( (6 x-1)+2 y=43 \), while Katy thinks it should be \( 3 x+2(6 x-1)=43 \). Who is correct and why? \[ y=6 x-1 \] \( 3 x+2 y=43 \)

Ask by Wheeler Paul. in the United States
Jan 27,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Katy is correct because she properly substituted \( y = 6x - 1 \) into the second equation, resulting in \( 3x + 2(6x - 1) = 43 \).

Solución

Katy is correct in her approach to the Substitution Method. Here's why: **Given System of Equations:** 1. \( y = 6x - 1 \)  — *Equation 1* 2. \( 3x + 2y = 43 \)   — *Equation 2* **Substitution Method Steps:** 1. **Solve one equation for one variable.** Equation 1 already expresses \( y \) in terms of \( x \): \[ y = 6x - 1 \] 2. **Substitute this expression into the other equation.** Substitute \( y = 6x - 1 \) into Equation 2: \[ 3x + 2(6x - 1) = 43 \] This is precisely what Katy did. **Why Kevin's Approach is Incorrect:** Kevin wrote: \[ 3(6x - 1) + 2y = 43 \] This introduces a substitution loop by substituting \( y \) back into Equation 2 **without eliminating** one variable. Instead of reducing the system to a single equation with one variable (which is the goal of the Substitution Method), Kevin's equation still contains both \( x \) and \( y \), making it more complicated to solve. **Conclusion:** Katy correctly substituted \( y = 6x - 1 \) into the second equation, simplifying the system to a single equation with one variable, thereby effectively applying the Substitution Method. **Answer:** Katy is correct because she correctly substituted y = 6x – 1 into the second equation, obtaining 3x + 2(6x − 1) = 43.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

Kevin is correct! When using the Substitution Method, you replace \( y \) in the second equation with the expression from the first equation. So, substituting \( y \) from \( y = 6x - 1 \) into \( 3x + 2y = 43 \) yields \( 3x + 2(6x - 1) = 43 \). Katy's method would actually lead to the correct substitution, but she started from the wrong perspective of transposing the terms. If we simplify Kevin's equation, it translates to \( 3(6x - 1) + 2y = 43 \) which doesn’t directly align with the original \( 3x + 2y = 43 \). So, the expression \( 3x + 2(6x - 1) \) is the necessary path to solve for \( x \) and \( y \).

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad