Pregunta
upstudy study bank question image url

Given the function \( f(x)=-x^{4}-12 x^{3} \), determine all intervals on which \( f^{\prime} \) is decreasing Answer Attempt 1 out of 2

Ask by Stuart Boone. in the United States
Jan 27,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

\( f'(x) \) is decreasing on the intervals \( (-\infty, -6) \) and \( (0, \infty) \).

Solución

To determine the intervals on which the derivative \( f'(x) \) of the function \( f(x) = -x^4 - 12x^3 \) is decreasing, follow these steps: ### 1. Compute the First Derivative \( f'(x) \): \[ f(x) = -x^4 - 12x^3 \] \[ f'(x) = \frac{d}{dx}(-x^4) + \frac{d}{dx}(-12x^3) \] \[ f'(x) = -4x^3 - 36x^2 \] ### 2. Compute the Second Derivative \( f''(x) \): \[ f''(x) = \frac{d}{dx}(-4x^3) + \frac{d}{dx}(-36x^2) \] \[ f''(x) = -12x^2 - 72x \] ### 3. Determine When \( f'(x) \) is Decreasing: The derivative \( f'(x) \) is decreasing where its second derivative \( f''(x) \) is negative: \[ f''(x) < 0 \] \[ -12x^2 - 72x < 0 \] #### Simplify the Inequality: \[ -12x^2 - 72x < 0 \] Divide both sides by -12 (note that this reverses the inequality sign): \[ x^2 + 6x > 0 \] #### Factor the Quadratic: \[ x(x + 6) > 0 \] #### Find Critical Points: The critical points are \( x = 0 \) and \( x = -6 \). #### Test Intervals: 1. **Interval \((-\infty, -6)\):** - Choose \( x = -7 \): \[ (-7)(-7 + 6) = (-7)(-1) = 7 > 0 \] - **Condition holds.** 2. **Interval \((-6, 0)\):** - Choose \( x = -3 \): \[ (-3)(-3 + 6) = (-3)(3) = -9 < 0 \] - **Condition does not hold.** 3. **Interval \((0, \infty)\):** - Choose \( x = 1 \): \[ (1)(1 + 6) = (1)(7) = 7 > 0 \] - **Condition holds.** ### 4. Conclusion: The derivative \( f'(x) \) is decreasing where \( f''(x) < 0 \), which corresponds to the intervals where \( x < -6 \) or \( x > 0 \). **Therefore, \( f'(x) \) is decreasing on the intervals:** \[ (-\infty, -6) \quad \text{and} \quad (0, \infty) \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the intervals where \( f' \) is decreasing, we first need to compute the derivative of the function \( f(x) = -x^4 - 12x^3 \). Calculating \( f'(x) \): \[ f'(x) = -4x^3 - 36x^2 \] Next, we want to find the second derivative, \( f''(x) \), to check where \( f' \) is decreasing: \[ f''(x) = -12x^2 - 72x \] Setting \( f''(x) < 0 \) to find the intervals where \( f' \) is decreasing: \[ -12x^2 - 72x < 0 \] Factoring out \(-12\): \[ -12(x^2 + 6x) < 0 \] This simplifies to: \[ x^2 + 6x > 0 \] Factoring gives: \[ x(x + 6) > 0 \] The critical points are \( x = 0 \) and \( x = -6 \). Testing intervals: - For \( x < -6 \): Both factors are negative, so the product is positive. - For \( -6 < x < 0 \): The first factor is negative, and the second is positive, so the product is negative. - For \( x > 0 \): Both factors are positive, so the product is positive. Thus, \( f' \) is decreasing on the interval \( (-6, 0) \).

preguntas relacionadas

Latest Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad