Pregunta
upstudy study bank question image url

A ball is thrown vertically upward from the top of a building 128 feet tall with an initial velocity of 112 feet per second. The distance \( s \) (in feet) of the ball from the ground after \( t \) seconds is \( s=128+112 t-16 t^{2} \) (a) After how many seconds does the ball strike the ground? (b) After how many seconds will the ball pass the top of the building on its way down? (a) After how many seconds does the ball strike the ground? \( t=\square \) seconds

Ask by Allan Bates. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The ball strikes the ground after 8 seconds.

Solución

To determine when the ball strikes the ground, we need to find the time \( t \) when the distance \( s(t) \) from the ground is zero. Given the equation: \[ s(t) = 128 + 112t - 16t^2 \] Set \( s(t) = 0 \) and solve for \( t \): \[ 0 = 128 + 112t - 16t^2 \] \[ -16t^2 + 112t + 128 = 0 \] To simplify, divide the entire equation by -16: \[ t^2 - 7t - 8 = 0 \] Now, solve the quadratic equation using the quadratic formula: \[ t = \frac{7 \pm \sqrt{(-7)^2 - 4(1)(-8)}}{2(1)} \] \[ t = \frac{7 \pm \sqrt{49 + 32}}{2} \] \[ t = \frac{7 \pm \sqrt{81}}{2} \] \[ t = \frac{7 \pm 9}{2} \] This gives two potential solutions: \[ t = \frac{16}{2} = 8 \] \[ t = \frac{-2}{2} = -1 \] Since time cannot be negative, we discard \( t = -1 \) and accept: \[ t = 8 \text{ seconds} \] **Answer:** Problem a Answer: The ball strikes the ground after \( 8 \) seconds.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To determine when the ball strikes the ground, we need to set the distance function \( s \) equal to zero (since the ground level is defined as 0 feet): \[ s = 128 + 112t - 16t^2 = 0 \] Rearranging gives us the equation: \[ -16t^2 + 112t + 128 = 0 \] To find \( t \), we can use the quadratic formula \( t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \), where \( a = -16 \), \( b = 112 \), and \( c = 128 \). First, let's calculate the discriminant: \[ b^2 - 4ac = 112^2 - 4(-16)(128) = 12544 + 8192 = 20736 \] Now apply the quadratic formula: \[ t = \frac{-112 \pm \sqrt{20736}}{2 \cdot -16} = \frac{-112 \pm 144}{-32} \] Calculating both potential solutions gives: 1. \( t = \frac{-112 + 144}{-32} = \frac{32}{-32} = -1 \) (not physical since time cannot be negative) 2. \( t = \frac{-112 - 144}{-32} = \frac{-256}{-32} = 8 \) So, the ball strikes the ground after \( t = 8 \) seconds. **Answer:** (a) After how many seconds does the ball strike the ground? \( t = 8 \) seconds (b) To find the time when the ball passes the top of the building on its way down, we check when the ball reaches 128 feet again. We set: \[ 128 + 112t - 16t^2 = 128 \] Which simplifies to: \[ 112t - 16t^2 = 0 \] Factoring gives: \[ 16t(7 - t) = 0 \] This yields two solutions: 1. \( t = 0 \) (the initial launch) 2. \( t = 7 \) The ball passes the top of the building on its way down after \( t = 7 \) seconds. **Answer:** (b) After how many seconds will the ball pass the top of the building on its way down? \( t = 7 \) seconds

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad