Pregunta
upstudy study bank question image url

4. A pool can hold 850 gallons. It now has 598 gallons of water and is being filled at the rate shown. How many more minutes, \( m \), can water continue to flow into the pool before it overflows? Write and solve an inequality.

Ask by Peterson Donnelly. in the United States
Feb 04,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

To prevent the pool from overflowing, the number of additional minutes \( m \) water can flow is less than or equal to \( \frac{252}{r} \), where \( r \) is the filling rate in gallons per minute.

Solución

To solve the problem, we need to determine how many more minutes, \( m \), water can flow into the pool before it overflows. ### Known Conditions: 1. The total capacity of the pool is 850 gallons. 2. The current amount of water in the pool is 598 gallons. 3. The rate at which water is being filled is not specified in the problem statement, so we will denote it as \( r \) gallons per minute. ### Step 1: Set up the inequality The amount of water that can still be added to the pool before it overflows is given by the difference between the total capacity and the current amount of water: \[ 850 - 598 = 252 \text{ gallons} \] The amount of water added over \( m \) minutes at a rate of \( r \) gallons per minute is \( r \cdot m \). To prevent overflow, the total amount of water in the pool after \( m \) minutes must be less than or equal to the pool's capacity: \[ 598 + r \cdot m \leq 850 \] ### Step 2: Rearranging the inequality Now, we can rearrange the inequality to isolate \( m \): \[ r \cdot m \leq 850 - 598 \] \[ r \cdot m \leq 252 \] \[ m \leq \frac{252}{r} \] ### Conclusion The inequality \( m \leq \frac{252}{r} \) tells us how many more minutes water can flow into the pool before it overflows, depending on the rate \( r \). If you provide the rate \( r \), we can calculate the exact number of minutes \( m \).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To find out how many more minutes water can flow into the pool before it overflows, we start by determining how much more water can be added. The pool can hold 850 gallons, and it currently has 598 gallons. The difference is \( 850 - 598 = 252 \) gallons. Now, if we let \( r \) represent the rate at which water is being filled in gallons per minute, we can set up the inequality for the time \( m \) (in minutes) it can continue to fill: \[ r \cdot m \leq 252 \] To find \( m \), we rearrange the inequality: \[ m \leq \frac{252}{r} \] This tells us that to avoid overflowing the pool, the filling time \( m \) must be less than or equal to \( \frac{252}{r} \). Just plug in the value of \( r \) to find the maximum minutes before the pool overflows! A fun fact about pools: Did you know that the world's largest swimming pool, located in Chile, holds an incredible 66 million gallons of water? You could fill an average family pool about 77 times with that amount! Also, it's interesting to note that water usage varies wildly for different activities. For instance, filling a regular-sized bathtub can use about 36 gallons of water. That means just one bathtub requires almost 1/7 of the total water needed to fill that pool! Water conservation is key, especially during summer!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad