Pregunta
upstudy study bank question image url

(i) The sum of the first three terms of an arithmetic series is 24 and the sum of the next three terms is -12 . Calculate the sum of the first twenty terms of this series. (i) The sum of the first three terms of a geometric series is equal to 15 and the sum of the next three terms is equal to \( -\frac{15}{8} \). Calculate the sum of the first 8 terms of this series. (k) The second term of a convergent geometric series is -12 and the sum to infinity is \( \frac{192}{5} \). Determine the first term and the constant ratio. (1) In a convergent geometric series, the sum of the first four terms is \( \frac{80}{3} \) and the sum to infinity of the series is 27 . Determine the general term.

Ask by Cervantes Fleming. in South Africa
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**Arithmetic Series:** - First term (\( a \)) = 12 - Common difference (\( d \)) = -4 - Sum of first 20 terms = -520

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Revisado y aprobado por el equipo de tutoría de UpStudy

Mind Expander

In an arithmetic series, we first note that the first three terms can be expressed as \(a\), \(a+d\), and \(a+2d\). If their sum is 24, we have \(3a + 3d = 24\), simplifying to \(a + d = 8\). The sum of the next three terms is \((a+3d) + (a+4d) + (a+5d) = 3a + 12d = -12\), which gives us another equation. Solving these two will help us find \(a\) and \(d\), leading to the sum of the first twenty terms using \(S_n = \frac{n}{2}(2a + (n-1)d)\). In the case of the geometric series, the first three terms can be represented as \(a\), \(ar\), and \(ar^2\). The equation for their sum, \(S_3 = a(1 + r + r^2)\), lets us establish a relationship when the sum of those three terms equals 15. For the next three terms, \(ar^3\), \(ar^4\), and \(ar^5\), their sum can also be expressed using the formula for geometric sums. By solving these, you'll uncover \(a\) and \(r\), leading you to find the sum of the first eight terms with \(S_8 = a \frac{1 - r^8}{1 - r}\).

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad