The combined savings of Abel and Bahira are 15435 dinars. The savings of Bahira are \( 45 \% \) more than the savings of Abel. The savings of Bahira are \( \frac{3}{2} \) times the savings of Chanda. Work out the savings of Chanda.
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
Let's denote Abel's savings as \( A \) and Bahira's savings as \( B \). According to the problem: 1. \( A + B = 15435 \) 2. \( B = A + 0.45A = 1.45A \) Now, substituting \( B \) in the first equation: \[ A + 1.45A = 15435 \] \[ 2.45A = 15435 \] \[ A = \frac{15435}{2.45} \approx 6300 \] Now to find Bahira's savings: \[ B = 1.45A = 1.45 \times 6300 \approx 9135 \] Next, we can find Chanda's savings \( C \). Given that Bahira's savings are \( \frac{3}{2} \) times Chanda's savings: \[ B = \frac{3}{2}C \implies C = \frac{2}{3}B \] \[ C = \frac{2}{3} \times 9135 = 6090 \] Thus, Chanda's savings are **6090 dinars**.