Pregunta
upstudy study bank question image url

es the problem below represent a linear function or an exponential function? What function can be use the situation? An online-based movie-rental site charges \( \$ 5 \) per month and \( \$ 0.50 \) per movie rented.

Ask by Young Norton. in the United States
Feb 04,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The problem represents a linear function. The total cost can be calculated using the function \( y = 5 + 0.50x \), where \( x \) is the number of movies rented.

Solución

To determine whether the problem represents a linear function or an exponential function, let's analyze the situation step by step. ### Known Conditions: 1. The monthly charge is \( \$ 5 \). 2. The charge per movie rented is \( \$ 0.50 \). ### Step 1: Identify the Variables - Let \( x \) represent the number of movies rented. - Let \( y \) represent the total cost. ### Step 2: Formulate the Cost Function The total cost \( y \) can be expressed as a function of the number of movies rented \( x \): \[ y = 5 + 0.50x \] ### Step 3: Analyze the Function Type - The function \( y = 5 + 0.50x \) is a linear function because it can be expressed in the form \( y = mx + b \), where: - \( m = 0.50 \) (the slope, representing the cost per movie) - \( b = 5 \) (the y-intercept, representing the fixed monthly charge) ### Conclusion The situation represents a **linear function**. The function that can be used to describe the total cost based on the number of movies rented is: \[ y = 5 + 0.50x \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

In this scenario, the cost can be modeled as a linear function because it has a constant rate of change. For every additional movie rented, the total cost increases by a fixed amount of \( \$0.50 \), plus the base monthly fee of \( \$5 \). The function can be expressed as \( C(m) = 5 + 0.50m \), where \( C \) is the total cost, and \( m \) is the number of movies rented. In real-world applications, linear functions are often used to represent straightforward billing like subscriptions or utility costs, where there is a flat fee and an additional charge per unit used. Understanding these functions helps consumers predict their expenses and manage their budgets effectively!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad