8. Use the Intermediate Value Theorem to show that \( x-3-\sqrt{x}=0 \) has at least one solution.
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
To apply the Intermediate Value Theorem (IVT), we first define a function based on the equation: \( f(x) = x - 3 - \sqrt{x} \). We seek values of \( x \) where \( f(x) \) changes sign. Let's evaluate \( f(0) \) and \( f(9) \): At \( x = 0 \): \[ f(0) = 0 - 3 - \sqrt{0} = -3 \] At \( x = 9 \): \[ f(9) = 9 - 3 - \sqrt{9} = 9 - 3 - 3 = 3 \] Since \( f(0) < 0 \) and \( f(9) > 0 \), by the IVT, there exists at least one \( c \) in the interval \( (0, 9) \) such that \( f(c) = 0 \). Now go try finding that mysterious \( c \) — it’s lurking between those two values!