Pregunta
upstudy study bank question image url

Assignment Calculate the distance betwren the poind A(2,3) and the inters \( y=x+s \) and \( 2 x+y=0 \)

Ask by Cox Howell. in Nigeria
Jan 26,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The distance between point \( A(2, 3) \) and the intersection of the lines \( y = x + s \) and \( 2x + y = 0 \) is \( \frac{\sqrt{5s^2 - 24s + 117}}{3} \).

Solución

To calculate the distance between the point \( A(2, 3) \) and the intersection of the two lines: 1. \( y = x + s \) 2. \( 2x + y = 0 \) where \( s \) is a constant, follow these steps: ### 1. Find the Intersection Point of the Two Lines To find the intersection point \( (x, y) \) of the lines \( y = x + s \) and \( 2x + y = 0 \), substitute \( y = x + s \) into the second equation: \[ 2x + (x + s) = 0 \] \[ 3x + s = 0 \] \[ x = -\frac{s}{3} \] Now, substitute \( x = -\frac{s}{3} \) back into \( y = x + s \) to find \( y \): \[ y = -\frac{s}{3} + s = \frac{2s}{3} \] So, the intersection point is: \[ \left( -\frac{s}{3}, \frac{2s}{3} \right) \] ### 2. Calculate the Distance Between \( A(2, 3) \) and the Intersection Point The distance \( D \) between two points \( (x_1, y_1) \) and \( (x_2, y_2) \) is given by the formula: \[ D = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \] Plugging in the coordinates of \( A(2, 3) \) and the intersection point \( \left( -\frac{s}{3}, \frac{2s}{3} \right) \): \[ D = \sqrt{\left( -\frac{s}{3} - 2 \right)^2 + \left( \frac{2s}{3} - 3 \right)^2} \] Simplify the expressions inside the square root: \[ D = \sqrt{\left( -\frac{s + 6}{3} \right)^2 + \left( \frac{2s - 9}{3} \right)^2} \] \[ D = \sqrt{\frac{(s + 6)^2 + (2s - 9)^2}{9}} \] \[ D = \frac{1}{3} \sqrt{(s + 6)^2 + (2s - 9)^2} \] Expand the squared terms: \[ (s + 6)^2 = s^2 + 12s + 36 \] \[ (2s - 9)^2 = 4s^2 - 36s + 81 \] Add them together: \[ s^2 + 12s + 36 + 4s^2 - 36s + 81 = 5s^2 - 24s + 117 \] Now, the distance becomes: \[ D = \frac{1}{3} \sqrt{5s^2 - 24s + 117} \] ### **Final Formula for the Distance** \[ D = \frac{\sqrt{5s^2 - 24s + 117}}{3} \] ### **Example Calculation** If a specific value for \( s \) is given, you can substitute it into the formula to find the numerical distance. For instance, let's assume \( s = 3 \): \[ D = \frac{\sqrt{5(3)^2 - 24(3) + 117}}{3} = \frac{\sqrt{45 - 72 + 117}}{3} = \frac{\sqrt{90}}{3} = \frac{3\sqrt{10}}{3} = \sqrt{10} \approx 3.162 \] So, when \( s = 3 \), the distance \( D \) is approximately \( 3.162 \) units. --- **Note:** If \( s \) is a known constant in your assignment, replace it with its value to compute the specific distance. If \( s \) is meant to represent something else (like a variable parameter), ensure you understand its intended use within the problem context.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the distance between point A(2,3) and the intersection of the lines \( y=x+s \) and \( 2x+y=0 \), we first need to solve for the intersection point by substituting the equation of \( y \) into the second line. Starting with \( 2x + (x+s) = 0 \), we simplify this to \( 3x + s = 0 \). Thus, \( x = -\frac{s}{3} \). Substituting \( x \) back into the first line gives \( y = -\frac{s}{3} + s = \frac{2s}{3} \). The intersection point is at \( \left(-\frac{s}{3}, \frac{2s}{3}\right) \). Now, use the distance formula \( D = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \) to calculate the distance from A(2,3) to the intersection point: \[ D = \sqrt{\left(2 + \frac{s}{3}\right)^2 + \left(3 - \frac{2s}{3}\right)^2} \] This will give you the distance based on the value of \( s \). Now, let’s look at how this relates to real-life applications! In real-world scenarios, understanding the distance between points on graphs can help in urban planning, like finding the shortest route between two landmarks considering road networks defined by linear functions. It’s crucial for making travel plans or setting up new facilities effectively! On a practical note, when solving for distances, it’s easy to overlook negative or fractional values in coordinates. Double-check your signs and ensure that you substitute correctly throughout the process, as these mistakes could lead to incorrect distance calculations. Keeping an eye on your arithmetic can save you from unnecessary headaches!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad