Pregunta
upstudy study bank question image url

1 Express \( \frac{3 x^{3}+6 x^{2}+5}{x^{2}\left(x^{2}+5\right)} \) in partial fractions.

Ask by Sandoval Black. in Singapore
Jan 26,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

\[ \frac{3x^{3} + 6x^{2} + 5}{x^{2}(x^{2} + 5)} = \frac{1}{x^{2}} + \frac{3x + 5}{x^{2} + 5} \]

Solución

To express the rational function \(\frac{3x^{3} + 6x^{2} + 5}{x^{2}(x^{2} + 5)}\) in partial fractions, follow these steps: 1. **Set Up the Partial Fraction Decomposition:** We assume the decomposition has the form: \[ \frac{3x^{3} + 6x^{2} + 5}{x^{2}(x^{2} + 5)} = \frac{A}{x} + \frac{B}{x^{2}} + \frac{Cx + D}{x^{2} + 5} \] 2. **Clear the Denominator:** Multiply both sides by \(x^{2}(x^{2} + 5)\): \[ 3x^{3} + 6x^{2} + 5 = A \cdot x(x^{2} + 5) + B(x^{2} + 5) + (Cx + D)x^{2} \] 3. **Expand and Combine Like Terms:** \[ 3x^{3} + 6x^{2} + 5 = (A + C)x^{3} + (B + D)x^{2} + 5A x + 5B \] 4. **Equate the Coefficients:** By comparing coefficients of corresponding powers of \(x\), we get: \[ \begin{cases} A + C = 3 \\ B + D = 6 \\ 5A = 0 \\ 5B = 5 \end{cases} \] 5. **Solve for the Constants:** - From \(5A = 0\), we find \(A = 0\). - Substituting \(A = 0\) into \(A + C = 3\), we get \(C = 3\). - From \(5B = 5\), we find \(B = 1\). - Substituting \(B = 1\) into \(B + D = 6\), we get \(D = 5\). 6. **Write the Final Partial Fraction Decomposition:** \[ \frac{3x^{3} + 6x^{2} + 5}{x^{2}(x^{2} + 5)} = \frac{1}{x^{2}} + \frac{3x + 5}{x^{2} + 5} \] **Final Answer:** \[ \frac{3x^{3} + 6x^{2} + 5}{x^{2}(x^{2} + 5)} = \frac{1}{x^{2}} + \frac{3x + 5}{x^{2} + 5} \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To express \( \frac{3 x^{3}+6 x^{2}+5}{x^{2}\left(x^{2}+5\right)} \) in partial fractions, we start by ensuring that the degree of the numerator is less than that of the denominator. Here, the numerator \(3x^3 + 6x^2 + 5\) has a degree of 3, which is greater than the degree of the denominator \(x^2(x^2 + 5)\) (which is degree 4). Therefore, we can proceed by performing polynomial long division first. 1. Divide \(3x^3 + 6x^2 + 5\) by \(x^2\): - \(3x\) times \(x^2\) gives \(3x^3\), and subtracting this results in \(6x^2 + 5 - 3x^3 = 6x^2 + 5\). - Now, \(3x^3\) is canceled out, and we can focus on \(6x^2 + 5\), leaving the fraction as: \[ 3x + \frac{6x^2 + 5}{x^2(x^2 + 5)} \] Now we can express the remaining fraction in partial fractions: \[ \frac{6x^2 + 5}{x^2(x^2 + 5)} = \frac{A}{x} + \frac{B}{x^2} + \frac{Cx + D}{x^2 + 5} \] where \(A\), \(B\), \(C\), and \(D\) are constants to be determined. 2. Clear the fractions by multiplying through by the denominator \(x^2(x^2 + 5)\): \[ 6x^2 + 5 = A x (x^2 + 5) + B (x^2 + 5) + (Cx + D) x^2 \] Expanding this gives: \[ 6x^2 + 5 = A x^3 + 5A x + B x^2 + 5B + C x^3 + D x^2 \] 3. Combine like terms: \[ = (A + C)x^3 + (B + D)x^2 + 5Ax + 5B \] Setting coefficients equal gives us a system of equations: - Coefficient of \(x^3\): \(A + C = 0\) - Coefficient of \(x^2\): \(B + D = 6\) - Coefficient of \(x^1\): \(5A = 0 \Rightarrow A = 0\) - Constant: \(5B = 5 \Rightarrow B = 1\) Using \(A = 0\) in the first equation: \[ 0 + C = 0 \Rightarrow C = 0 \] And substituting \(B = 1\) in the second equation: \[ 1 + D = 6 \Rightarrow D = 5 \] Now we have the constants: - \(A = 0\) - \(B = 1\) - \(C = 0\) - \(D = 5\) Thus, we can rewrite the original fraction as: \[ \frac{3 x^{3}+6 x^{2}+5}{x^{2}\left(x^{2}+5\right)} = 3x + \frac{1}{x^2} + \frac{5}{x^2 + 5} \] Therefore, the final partial fraction decomposition is: \[ \frac{3 x^{3}+6 x^{2}+5}{x^{2}(x^{2}+5)} = 3x + \frac{1}{x^2} + \frac{5}{x^2 + 5} \]

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad