Pregunta
upstudy study bank question image url

Print first and last names of each group member at the top of the page. 1. Sketch the graph of a function \( f \) with all the following properties. Identify and label any points of discontinuity on the interval \( (-\infty, \infty) \) \[ \lim _{x \rightarrow-9^{-}} f(x)=\infty \quad \lim _{x \rightarrow-5} f(x)=\infty \quad \lim _{x \rightarrow 2^{+}} f(x)=-4 \] \[ \lim _{x \rightarrow-9^{+}} f(x)=-\infty \quad \lim _{x \rightarrow 2^{-}} f(x)=1 \quad f(2)=5 \]

Ask by Clark Bond. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**Group Members:** - [First Name] [Last Name] - [First Name] [Last Name] - [First Name] [Last Name] --- **Problem 1:** **Sketch the graph of a function \( f \) with the following properties:** - As \( x \) approaches \(-9\) from the left, \( f(x) \) goes to positive infinity. - As \( x \) approaches \(-9\) from the right, \( f(x) \) goes to negative infinity. - As \( x \) approaches \(-5\), \( f(x) \) goes to positive infinity. - As \( x \) approaches \(2\) from the left, \( f(x) \) approaches \(1\). - As \( x \) approaches \(2\) from the right, \( f(x) \) approaches \(-4\). - At \( x = 2 \), \( f(x) = 5 \). **Points of Discontinuity:** - Vertical asymptotes at \( x = -9 \) and \( x = -5 \). - Removable discontinuity at \( x = 2 \). **Instructions:** 1. Draw vertical asymptotes at \( x = -9 \) and \( x = -5 \). 2. At \( x = 2 \), plot a point at \( (2, 5) \) with a hole indicating the discontinuity. 3. Sketch the graph smoothly elsewhere, ensuring the specified limits are met. --- **Summary:** The function \( f \) has vertical asymptotes at \( x = -9 \) and \( x = -5 \), and a removable discontinuity at \( x = 2 \).

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Revisado y aprobado por el equipo de tutoría de UpStudy

Beyond the Answer

To sketch the graph of the function \( f \) based on the provided limits, start by marking the points of discontinuity at \( x = -9 \), \( x = -5 \), and \( x = 2 \). At \( x = -9 \), the left-hand limit approaches \( \infty \), while the right-hand limit approaches \( -\infty \), creating a vertical asymptote. At \( x = -5 \), the function also tends to \( \infty \) from both sides, indicating another vertical asymptote. For the point at \( x = 2 \), the graph behaves differently: as \( x \) approaches 2 from the left, \( f(x) \) approaches 1; from the right, \( f(x) \) approaches -4. However, the actual function value at \( f(2) \) is 5, marking an additional point of discontinuity. The general shape of the graph will feature these vertical asymptotes and jump discontinuities, with \( f(2) = 5 \) standing out clearly. Now just make sure to label all these critical points clearly on your sketch, perhaps with arrows indicating the behavior of the function near each discontinuity! Happy graphing!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad