Print first and last names of each group member at the top of the page. 1. Sketch the graph of a function \( f \) with all the following properties. Identify and label any points of discontinuity on the interval \( (-\infty, \infty) \) \[ \lim _{x \rightarrow-9^{-}} f(x)=\infty \quad \lim _{x \rightarrow-5} f(x)=\infty \quad \lim _{x \rightarrow 2^{+}} f(x)=-4 \] \[ \lim _{x \rightarrow-9^{+}} f(x)=-\infty \quad \lim _{x \rightarrow 2^{-}} f(x)=1 \quad f(2)=5 \]
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
To sketch the graph of the function \( f \) based on the provided limits, start by marking the points of discontinuity at \( x = -9 \), \( x = -5 \), and \( x = 2 \). At \( x = -9 \), the left-hand limit approaches \( \infty \), while the right-hand limit approaches \( -\infty \), creating a vertical asymptote. At \( x = -5 \), the function also tends to \( \infty \) from both sides, indicating another vertical asymptote. For the point at \( x = 2 \), the graph behaves differently: as \( x \) approaches 2 from the left, \( f(x) \) approaches 1; from the right, \( f(x) \) approaches -4. However, the actual function value at \( f(2) \) is 5, marking an additional point of discontinuity. The general shape of the graph will feature these vertical asymptotes and jump discontinuities, with \( f(2) = 5 \) standing out clearly. Now just make sure to label all these critical points clearly on your sketch, perhaps with arrows indicating the behavior of the function near each discontinuity! Happy graphing!