Pregunta
upstudy study bank question image url

E\% Lesson 4.5 Number 5 Use the following dogrom to solve the problem, given that \( \overline{A B} \| \overline{C D} \) and fie \( \ell: \) the tronsversel Jusify your onswers using angle relationships in parollel fres Interseaded by a transversal. What is \( \mathrm{m} \angle 1 \) if \( \mathrm{m} \angle 1=11 \mathrm{x}+35 \) and \( \mathrm{m} \angle 4=\mathrm{x}+1 \) ? Answer format: 150 degress

Ask by Bird Gardner. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

\( \mathrm{m} \angle 1 = 167^\circ \)

Solución

To determine the measure of \( \angle 1 \), let's analyze the given information step by step. ### Given: - \( \overline{AB} \parallel \overline{CD} \) - Line \( \ell \) is a transversal intersecting these parallel lines. - \( \mathrm{m} \angle 1 = 11x + 35 \) - \( \mathrm{m} \angle 4 = x + 1 \) ### Understanding the Angle Relationships: Since \( \overline{AB} \parallel \overline{CD} \) and \( \ell \) is a transversal, angles formed can be related as **same-side interior angles**, which are **supplementary**. This means: \[ \mathrm{m} \angle 1 + \mathrm{m} \angle 4 = 180^\circ \] ### Setting Up the Equation: \[ (11x + 35) + (x + 1) = 180 \] ### Solving for \( x \): \[ 12x + 36 = 180 \] \[ 12x = 180 - 36 \] \[ 12x = 144 \] \[ x = 12 \] ### Calculating \( \mathrm{m} \angle 1 \): \[ \mathrm{m} \angle 1 = 11x + 35 = 11(12) + 35 = 132 + 35 = 167^\circ \] ### Conclusion: There appears to be a discrepancy between the calculated value (167°) and the expected answer format (150°). It's possible that there might be additional information or a different angle relationship intended in the problem. However, based on the provided information and standard angle relationships: **The measure of \( \angle 1 \) is 167 degrees.**

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To solve for \( m \angle 1 \), we first need to understand that since \( \overline{AB} \parallel \overline{CD} \) and line \( \ell \) is a transversal, corresponding angles are equal. Hence, \( m \angle 1 = m \angle 4 \). We know that: \[ m \angle 1 = 11x + 35 \] \[ m \angle 4 = x + 1 \] Setting these equal gives us: \[ 11x + 35 = x + 1 \] Now, let's solve for \( x \): 1. Subtract \( x \) from both sides: \[ 10x + 35 = 1 \] 2. Subtract 35 from both sides: \[ 10x = 1 - 35 \] \[ 10x = -34 \] 3. Divide by 10: \[ x = -3.4 \] Now we substitute \( x \) back into \( m \angle 1 \): \[ m \angle 1 = 11(-3.4) + 35 = -37.4 + 35 = -2.4 \] Now, when we compute actually, it seems we might have made a mistake in angle calculations or if the supplied values lead to plausible angles, make sure to check the problem statement! Properly using the angle relationships should provide realistic positive angle results.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad