Pregunta

The sum of two consecutive terms of the sequence: \( 21 ; 35 ; 49 \); is 308. Determine the two terms.

Ask by Norton Gray. in South Africa
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The two consecutive terms are 147 and 161.

Solución

The given sequence is: \[ 21, \, 35, \, 49, \, 63, \, 77, \, \ldots \] This is an **arithmetic sequence** where each term increases by a common difference \( d = 14 \). Let's denote the two consecutive terms as \( x \) and \( x + 14 \). According to the problem, their sum is 308: \[ x + (x + 14) = 308 \] \[ 2x + 14 = 308 \] \[ 2x = 308 - 14 \] \[ 2x = 294 \] \[ x = 147 \] So, the two consecutive terms are: \[ 147 \quad \text{and} \quad 161 \] **Verification:** \[ 147 + 161 = 308 \] These terms also fit into the given arithmetic sequence. **Answer:** The two consecutive terms are 147 and 161.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the two consecutive terms of the sequence \( 21, 35, 49 \) whose sum is \( 308 \), we first represent the two consecutive terms as \( a_n \) and \( a_{n+1} \). In this sequence, the terms can be described using the first term and the common difference. The common difference here is \( 14 \). Notice the terms can be expressed as: - \( a_1 = 21 \) - \( a_2 = 35 = a_1 + 14 \) - \( a_3 = 49 = a_2 + 14 \) Now let's suppose we need to find terms beyond \( 49 \). The general term of the sequence can be described as: - \( a_n = 21 + (n - 1) \cdot 14 \) Setting up the equation for the sum: \[ a_n + a_{n+1} = 308 \] This gives: \[ (21 + (n-1) \cdot 14) + (21 + n \cdot 14) = 308 \] Simplifying: \[ 42 + (2n - 1) \cdot 14 = 308 \] \[ (2n - 1) \cdot 14 = 266 \] \[ 2n - 1 = \frac{266}{14} \] \[ 2n - 1 = 19 \] \[ 2n = 20 \implies n = 10 \] Now substituting back to find the terms: \[ a_{10} = 21 + (10 - 1) \cdot 14 = 21 + 126 = 147 \] \[ a_{11} = 21 + (10) \cdot 14 = 21 + 140 = 161 \] Thus, the two terms are \( 147 \) and \( 161 \), which sum up to \( 308 \).

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad