Pregunta
upstudy study bank question image url

Determine the sum to 16 terms of the arithmetic series whose \( 7^{\text {th }} \) term is 19 and whose \( 10^{\text {th }} \) term is 25 . Find the arithmetic series

Ask by Chadwick Murphy. in South Africa
Jan 27,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The arithmetic series is 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37. The sum of the first 16 terms is 352.

Solución

To determine the sum of the first 16 terms of the given arithmetic series, we'll follow these steps: ### Step 1: Identify the Given Information - **7th term (\(a_7\))**: 19 - **10th term (\(a_{10}\))**: 25 ### Step 2: Use the Formula for the \(n^{th}\) Term of an Arithmetic Series The \(n^{th}\) term of an arithmetic series is given by: \[ a_n = a + (n-1)d \] where: - \(a\) = first term - \(d\) = common difference **For the 7th term:** \[ a + 6d = 19 \quad \text{(1)} \] **For the 10th term:** \[ a + 9d = 25 \quad \text{(2)} \] ### Step 3: Solve the System of Equations Subtract equation (1) from equation (2): \[ (a + 9d) - (a + 6d) = 25 - 19 \\ 3d = 6 \\ d = 2 \] Now, substitute \(d = 2\) into equation (1): \[ a + 6(2) = 19 \\ a + 12 = 19 \\ a = 7 \] ### Step 4: List the First 16 Terms of the Series Using \(a = 7\) and \(d = 2\), the first 16 terms are: \[ \begin{align*} 1^{st} & : 7 \\ 2^{nd} & : 7 + 2 = 9 \\ 3^{rd} & : 9 + 2 = 11 \\ 4^{th} & : 11 + 2 = 13 \\ 5^{th} & : 13 + 2 = 15 \\ 6^{th} & : 15 + 2 = 17 \\ 7^{th} & : 17 + 2 = 19 \\ 8^{th} & : 19 + 2 = 21 \\ 9^{th} & : 21 + 2 = 23 \\ 10^{th} & : 23 + 2 = 25 \\ 11^{th} & : 25 + 2 = 27 \\ 12^{th} & : 27 + 2 = 29 \\ 13^{th} & : 29 + 2 = 31 \\ 14^{th} & : 31 + 2 = 33 \\ 15^{th} & : 33 + 2 = 35 \\ 16^{th} & : 35 + 2 = 37 \\ \end{align*} \] So, the arithmetic series is: \[ 7, \ 9, \ 11, \ 13, \ 15, \ 17, \ 19, \ 21, \ 23, \ 25, \ 27, \ 29, \ 31, \ 33, \ 35, \ 37 \] ### Step 5: Calculate the Sum of the First 16 Terms The sum \(S_n\) of the first \(n\) terms of an arithmetic series is given by: \[ S_n = \frac{n}{2} [2a + (n-1)d] \] Substituting \(n = 16\), \(a = 7\), and \(d = 2\): \[ S_{16} = \frac{16}{2} [2(7) + (16-1)(2)] \\ S_{16} = 8 [14 + 30] \\ S_{16} = 8 \times 44 \\ S_{16} = 352 \] ### **Final Answer** The arithmetic series is: \[7, \ 9, \ 11, \ 13, \ 15, \ 17, \ 19, \ 21, \ 23, \ 25, \ 27, \ 29, \ 31, \ 33, \ 35, \ 37\] and the sum of its first 16 terms is **352**.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the arithmetic series, we first need to determine the first term \( a \) and the common difference \( d \). Given that the \( 7^{\text{th}} \) term is 19 and the \( 10^{\text{th}} \) term is 25, we can use the formula for the \( n^{\text{th}} \) term of an arithmetic series: \[ T_n = a + (n - 1)d \] For \( T_7 = 19 \): \[ a + 6d = 19 \quad \text{(1)} \] For \( T_{10} = 25 \): \[ a + 9d = 25 \quad \text{(2)} \] Now, we can subtract equation (1) from equation (2): \[ (a + 9d) - (a + 6d) = 25 - 19 \] \[ 3d = 6 \quad \Rightarrow \quad d = 2 \] Substituting \( d = 2 \) back into equation (1): \[ a + 6(2) = 19 \] \[ a + 12 = 19 \quad \Rightarrow \quad a = 7 \] Now, we have \( a = 7 \) and \( d = 2 \). The series can be expressed as: \[ 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, \ldots \] To find the sum of the first 16 terms, we use the sum formula for an arithmetic series: \[ S_n = \frac{n}{2}(2a + (n-1)d) \] where \( n = 16 \). Substituting the values: \[ S_{16} = \frac{16}{2}(2(7) + (16-1)(2)) \] \[ S_{16} = 8(14 + 30) = 8 \times 44 = 352 \] The sum of the first 16 terms of the arithmetic series is \( 352 \), and the series itself is given by the ordered numbers starting from 7 and increasing by 2.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad