Pregunta
upstudy study bank question image url

If \( \operatorname{Cos} \theta=\frac{4}{3} \) Then find \( \sin \theta+\tan \theta-\cot \theta+\operatorname{cosec} \theta \)

Ask by Reid Coles. in India
Jan 27,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The final answer is \( \frac{61\sqrt{7}}{84} \).

Solución

It appears there might be a typo in the problem statement since \(\cos \theta = \frac{4}{3}\) exceeds the range of the cosine function, which is \([-1, 1]\) for real numbers. However, we'll proceed under the assumption that the correct value is \(\cos \theta = \frac{3}{4}\). Given: \[ \cos \theta = \frac{3}{4} \] Let's find each required trigonometric function step by step. 1. **Find \(\sin \theta\):** \[ \sin^2 \theta + \cos^2 \theta = 1 \\ \sin^2 \theta = 1 - \left(\frac{3}{4}\right)^2 = 1 - \frac{9}{16} = \frac{7}{16} \\ \sin \theta = \frac{\sqrt{7}}{4} \] 2. **Find \(\tan \theta\):** \[ \tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{\frac{\sqrt{7}}{4}}{\frac{3}{4}} = \frac{\sqrt{7}}{3} \] 3. **Find \(\cot \theta\):** \[ \cot \theta = \frac{1}{\tan \theta} = \frac{3}{\sqrt{7}} \] 4. **Find \(\csc \theta\):** \[ \csc \theta = \frac{1}{\sin \theta} = \frac{4}{\sqrt{7}} \] Now, substitute these values into the expression: \[ \sin \theta + \tan \theta - \cot \theta + \csc \theta = \frac{\sqrt{7}}{4} + \frac{\sqrt{7}}{3} - \frac{3}{\sqrt{7}} + \frac{4}{\sqrt{7}} \] Combine like terms: \[ = \left(\frac{\sqrt{7}}{4} + \frac{\sqrt{7}}{3}\right) + \left(-\frac{3}{\sqrt{7}} + \frac{4}{\sqrt{7}}\right) \] \[ = \sqrt{7}\left(\frac{1}{4} + \frac{1}{3}\right) + \frac{1}{\sqrt{7}} \] \[ = \sqrt{7} \left( \frac{7}{12} \right) + \frac{\sqrt{7}}{7} \] \[ = \frac{7\sqrt{7}}{12} + \frac{\sqrt{7}}{7} \] \[ = \frac{49\sqrt{7}}{84} + \frac{12\sqrt{7}}{84} = \frac{61\sqrt{7}}{84} \] **Final Answer:** \[ \boxed{\dfrac{61\,\sqrt{7}}{84}} \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

Let's correct the value of \(\operatorname{Cos} \theta\): it should be between -1 and 1. So if \(\operatorname{Cos} \theta = \frac{4}{3}\), this is not possible. However, if we instead assume we meant to approach this with a valid angle, let's analyze with alternative parameters. Given that \(\cos \theta = \frac{4}{3}\) seems impractical, let's assume \(\theta\) could still yield meaningful operations under similar expressions. However, knowing the correct relation is vital in traditional contexts. 1. Using the relationship of sine and cosine: \[ \sin^2 \theta + \cos^2 \theta = 1 \] Thus, \[ \sin^2 \theta = 1 - \left(\frac{4}{3}\right)^2 = 1 - \frac{16}{9} = -\frac{7}{9} \] Clearly, \(\sin^2 \theta\) cannot be negative, indicating \(\cos \theta = \frac{4}{3}\) is impossible. Therefore, we need to analyze valid expressions without assuming incorrect cosine values. To still provide insights, if we consider practical uses or operations involving trigonometric identities, relevant details should focus on how to evaluate angles effectively within standard ranges (like 0 to \(2\pi\)), or using properties from valid trigonometric identities or the unit circle. So upon validating correct ranges: Using valid \(\cos \theta\) within trigonometric circles would entail obtaining sine and other trigonometric functions through: - The use of arcsin or arccos functions given angle positions. - Evaluating through triangles while maintaining valid properties above, such as angles equating to the Pythagorean identities. That way, you can harness sine from cosine directly with careful angle selection and positive relations throughout calculations. For further studies, consider delving into trigonometric functions and their properties while safeguarding operational values reside within [-1,1], allowing clear evaluations and grounded real-world geometric interpretations!

preguntas relacionadas

Latest Trigonometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad