Pregunta
upstudy study bank question image url

25. The mean monthly rent for a sample of studio apartments in one city is \( \$ 1100 \) with a standard deviation of \( \$ 210 \). The monthly rents for eight more studio apartments in the city a listed. Using the sample statistics above, determine which of the data values are unusual. Are any of the data values very unusual? Explain. (Assume the data set has a bell-shaped distribution.) \( \$ 1774, \$ 1536, \$ 1341, \$ 428, \$ 601, \$ 1062, \$ 947, \$ 796 \)

Ask by Black Hobbs. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The unusual rents are \$1,536, \$601, \$1,774, and \$428.

Solución

To determine which data values are **unusual** or **very unusual** in the given dataset, we'll use the concepts of **standard deviations** in a **bell-shaped (normal) distribution**. ### Given: - **Mean (\( \mu \))**: \$1,100 - **Standard Deviation (\( \sigma \))**: \$210 - **Data Values**: \$1,774, \$1,536, \$1,341, \$428, \$601, \$1,062, \$947, \$796 ### Definitions: 1. **Unusual Values**: Data points that are more than **2 standard deviations** away from the mean. 2. **Very Unusual Values**: Data points that are more than **3 standard deviations** away from the mean. ### Calculations: 1. **2 Standard Deviations from the Mean**: - Lower Bound: \( \mu - 2\sigma = 1,100 - (2 \times 210) = 680 \) - Upper Bound: \( \mu + 2\sigma = 1,100 + (2 \times 210) = 1,520 \) 2. **3 Standard Deviations from the Mean**: - Lower Bound: \( \mu - 3\sigma = 1,100 - (3 \times 210) = 470 \) - Upper Bound: \( \mu + 3\sigma = 1,100 + (3 \times 210) = 1,730 \) ### Analyzing Each Data Value: | **Value (\$)** | **Position Relative to Bounds** | **Classification** | |----------------|------------------------------------------------|---------------------| | **1,774** | **Above** \( 1,730 \) (Mean + 3σ) | **Very Unusual** | | **1,536** | Between \( 1,520 \) and \( 1,730 \) (2σ - 3σ) | **Unusual** | | **1,341** | Between \( 680 \) and \( 1,520 \) (-2σ to +2σ) | **Not Unusual** | | **428** | **Below** \( 470 \) (Mean - 3σ) | **Very Unusual** | | **601** | Between \( 470 \) and \( 680 \) (-3σ to -2σ) | **Unusual** | | **1,062** | Between \( 680 \) and \( 1,520 \) (-2σ to +2σ) | **Not Unusual** | | **947** | Between \( 680 \) and \( 1,520 \) (-2σ to +2σ) | **Not Unusual** | | **796** | Between \( 680 \) and \( 1,520 \) (-2σ to +2σ) | **Not Unusual** | ### Summary: - **Very Unusual Values**: - **\$1,774**: Exceeds the upper limit by more than 3 standard deviations. - **\$428**: Falls below the lower limit by more than 3 standard deviations. - **Unusual Values**: - **\$1,536**: Exceeds the upper limit by between 2 and 3 standard deviations. - **\$601**: Falls below the lower limit by between 2 and 3 standard deviations. - **Not Unusual**: - **\$1,341**, **\$1,062**, **\$947**, **\$796**: All lie within 2 standard deviations of the mean. ### Conclusion: - **Unusual Data Values**: \$1,536 and \$601. - **Very Unusual Data Values**: \$1,774 and \$428. These classifications are based on their positions relative to the mean and standard deviations in a normally distributed dataset. **Answer Summary:** All rents except $1,774 and $428 fall within two standard deviations of the mean and are not unusual. The values $1,536 and $601 are more than two standard deviations from the mean and are therefore unusual. Additionally, $1,774 and $428 lie beyond three standard deviations and are very unusual.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To determine which of the data values are unusual, we can use the mean and standard deviation provided. Since the data is assumed to be normally distributed, we can identify unusual values as those that fall more than 2 standard deviations from the mean. The mean \(\mu\) is \$1100 and the standard deviation \(\sigma\) is \$210. Calculating the cutoff for unusual values: - Lower bound: \(\mu - 2\sigma = 1100 - 2(210) = 680\) - Upper bound: \(\mu + 2\sigma = 1100 + 2(210) = 1520\) Now, we can check the new apartment rent values against these boundaries: - \$1774 (greater than \$1520 - very unusual) - \$1536 (greater than \$1520 - very unusual) - \$1341 (within range - not unusual) - \$428 (less than \$680 - very unusual) - \$601 (less than \$680 - very unusual) - \$1062 (within range - not unusual) - \$947 (within range - not unusual) - \$796 (within range - not unusual) In summary, the rents of \$1774, \$1536, \$428, and \$601 are considered unusual, with the first two being very unusual due to being significantly above the average, while the latter two are very unusual for being well below the average. Remember, in statistics, unusual is just a fun way to say "outlier," and spotting these can help us understand the data better!

preguntas relacionadas

Latest Statistics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad