Rationalize the denominator and simplify. \[ \frac{\sqrt{7}}{14-\sqrt{7}} \]
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
To rationalize the denominator in the expression \( \frac{\sqrt{7}}{14-\sqrt{7}} \), we can multiply the numerator and denominator by the conjugate of the denominator, which is \( 14 + \sqrt{7} \). Doing this, we have: \[ \frac{\sqrt{7}(14 + \sqrt{7})}{(14 - \sqrt{7})(14 + \sqrt{7})} \] Now, calculate the denominator: \[ (14 - \sqrt{7})(14 + \sqrt{7}) = 14^2 - (\sqrt{7})^2 = 196 - 7 = 189 \] Next, calculate the numerator: \[ \sqrt{7}(14 + \sqrt{7}) = 14\sqrt{7} + 7 \] Now, we can combine these results: \[ \frac{14\sqrt{7} + 7}{189} \] The expression can be simplified further by separating the fraction: \[ \frac{14\sqrt{7}}{189} + \frac{7}{189} \] This becomes: \[ \frac{14\sqrt{7}}{189} + \frac{1}{27} \] The fraction \( \frac{14}{189} \) simplifies to \( \frac{2}{27} \), hence: \[ \frac{2\sqrt{7}}{27} + \frac{1}{27} = \frac{2\sqrt{7} + 1}{27} \] Thus, the final simplified result is: \[ \frac{2\sqrt{7} + 1}{27} \]