Determine which of the following points are included in the solution set to the following system of linear inequalities. \[ \begin{aligned} x+3 y & >-8 \\ -2 x+3 y & \leq 1 \end{aligned} \] Answer \( (8,4) \) \( (0,0) \) \( (-8,-2) \) \( \left(-7,-\frac{1}{3}\right) \) \( (7,5) \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
To determine whether each point is included in the solution set, we need to test each point against the given inequalities. 1. For the point \( (8,4) \): - \( x + 3y = 8 + 3(4) = 8 + 12 = 20 > -8 \) (True) - \( -2x + 3y = -2(8) + 3(4) = -16 + 12 = -4 \leq 1 \) (True) This point satisfies both inequalities. 2. For the point \( (0,0) \): - \( x + 3y = 0 + 3(0) = 0 > -8 \) (True) - \( -2x + 3y = -2(0) + 3(0) = 0 \leq 1 \) (True) This point satisfies both inequalities. 3. For the point \( (-8,-2) \): - \( x + 3y = -8 + 3(-2) = -8 - 6 = -14 > -8 \) (False) It does not satisfy the first inequality. 4. For the point \( \left(-7,-\frac{1}{3}\right) \): - \( x + 3y = -7 + 3\left(-\frac{1}{3}\right) = -7 - 1 = -8 > -8 \) (False) It does not satisfy the first inequality. 5. For the point \( (7,5) \): - \( x + 3y = 7 + 3(5) = 7 + 15 = 22 > -8 \) (True) - \( -2x + 3y = -2(7) + 3(5) = -14 + 15 = 1 \leq 1 \) (True) This point satisfies both inequalities. Upon checking, the points included in the solution set are: \( (8,4), (0,0), \) and \( (7,5) \). The points \( (-8,-2) \) and \( \left(-7,-\frac{1}{3}\right) \) are not included.