\( \frac{a}{-2}<-1 \) or \( -4 a+3 \geq 23 \) Solution Interval Notation \( \square \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
To solve \( \frac{a}{-2} < -1 \), multiply both sides by -2 (note that this reverses the inequality), giving \( a > 2 \). For the second inequality \( -4a + 3 \geq 23 \), subtract 3 from both sides to get \( -4a \geq 20 \). Dividing by -4 (again reversing the inequality) gives \( a \leq -5 \). Combining these results, the solution in interval notation is: \( (-\infty, -5] \cup (2, \infty) \). If you find inequalities confusing, remember that reversing the inequality is like flipping a pancake: when you do it, things get turned upside down! Common mistakes often arise from forgetting this crucial step. Always be cautious about signs when multiplying or dividing negative numbers!