Pregunta
Let
be the region bounded by the curves
and
. Let
be the solid generated
when
is revolved about the
-axis in the first quadrant. Find the volume of
by both the
disc/washer and shell methods. Check that your results agree.
when
disc/washer and shell methods. Check that your results agree.
Ask by Wright Schultz. in the United States
Jan 23,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
The volume of the solid
is
cubic units.
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Como
Mind Expander
To find the volume of the solid
generated by revolving the region
bounded by the curves
and
around the
-axis, we’ll start by determining the points of intersection of these curves. Setting
, we raise both sides to the power of 3:
This gives us:
The solutions are
,
, and
(but we only consider the first quadrant, so
).
The two curves intersect at the points
and
.
Volume Using the Disc/Washer Method
When revolving around the
-axis, we compute the volume using the difference of the discs:
The outer radius corresponds to
and the inner radius corresponds to
:
Now, we compute this integral:
Volume Using the Shell Method
For the shell method, we revolve around the
-axis and express the volume as:
Here, we need to express
as functions of
. From the equations, we have:
For
:
For
:
The height of the shell is the difference between
values, and the radius is
:
Now, we compute this integral:
Calculating this gives:
Conclusion
Thus, both the disc/washer method and the shell method give the same volume of the solid
:

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium