Pregunta
upstudy study bank question image url

Let \( R \) be the region bounded by the curves \( y=x \) and \( y=x^{\frac{1}{3}} \). Let \( S \) be the solid generated when \( R \) is revolved about the \( x \)-axis in the first quadrant. Find the volume of \( S \) by both the disc/washer and shell methods. Check that your results agree.

Ask by Wright Schultz. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The volume of the solid \( S \) is \( \frac{4\pi}{15} \) cubic units.

Solución

To find the volume of the solid \( S \) generated by revolving the region \( R \) bounded by the curves \( y = x \) and \( y = x^{\frac{1}{3}} \) about the \( x \)-axis, we can use both the **washer (disc) method** and the **shell method**. Let's proceed step-by-step. ### 1. Identifying the Region \( R \) First, determine the points of intersection between \( y = x \) and \( y = x^{\frac{1}{3}} \): \[ x = x^{\frac{1}{3}} \implies x^3 = x \implies x(x^2 - 1) = 0 \implies x = 0 \text{ or } x = \pm 1 \] Since we're considering the first quadrant (\( x \geq 0 \)), the intersection points are \( x = 0 \) and \( x = 1 \). For \( 0 \leq x \leq 1 \): \[ y = x^{\frac{1}{3}} \geq y = x \] Thus, the region \( R \) is bounded by \( x = 0 \), \( x = 1 \), \( y = x \), and \( y = x^{\frac{1}{3}} \). ### 2. Washer (Disc) Method When revolving around the \( x \)-axis, the volume \( V \) can be computed using: \[ V = \pi \int_{a}^{b} \left[ (y_{\text{upper}})^2 - (y_{\text{lower}})^2 \right] dx \] Here: - Upper curve: \( y = x^{\frac{1}{3}} \) - Lower curve: \( y = x \) - Limits of integration: \( a = 0 \), \( b = 1 \) Thus, \[ V = \pi \int_{0}^{1} \left[ \left( x^{\frac{1}{3}} \right)^2 - x^2 \right] dx = \pi \int_{0}^{1} \left( x^{\frac{2}{3}} - x^2 \right) dx \] Calculating the integral: \[ \int x^{\frac{2}{3}} dx = \frac{3}{5} x^{\frac{5}{3}}, \quad \int x^2 dx = \frac{1}{3} x^3 \] Plugging in the limits: \[ V = \pi \left[ \frac{3}{5}x^{\frac{5}{3}} - \frac{1}{3}x^3 \right]_0^1 = \pi \left( \frac{3}{5} - \frac{1}{3} \right) = \pi \left( \frac{9}{15} - \frac{5}{15} \right) = \pi \left( \frac{4}{15} \right) = \frac{4\pi}{15} \] ### 3. Shell Method For the shell method, it's convenient to integrate with respect to \( y \). Express \( x \) in terms of \( y \): \[ y = x \implies x = y, \quad y = x^{\frac{1}{3}} \implies x = y^3 \] The height of each cylindrical shell is \( x_{\text{right}} - x_{\text{left}} = y - y^3 \), and the radius is \( y \). The volume \( V \) is given by: \[ V = 2\pi \int_{c}^{d} (\text{radius})(\text{height}) dy = 2\pi \int_{0}^{1} y (y - y^3) dy \] Simplifying the integral: \[ V = 2\pi \int_{0}^{1} (y^2 - y^4) dy = 2\pi \left[ \frac{1}{3}y^3 - \frac{1}{5}y^5 \right]_0^1 = 2\pi \left( \frac{1}{3} - \frac{1}{5} \right) = 2\pi \left( \frac{2}{15} \right) = \frac{4\pi}{15} \] ### 4. Conclusion Both methods yield the same result: \[ \boxed{\dfrac{4\,\pi}{15}} \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the volume of the solid \( S \) generated by revolving the region \( R \) bounded by the curves \( y = x \) and \( y = x^{\frac{1}{3}} \) around the \( x \)-axis, we'll start by determining the points of intersection of these curves. Setting \( x = x^{\frac{1}{3}} \), we raise both sides to the power of 3: \[ x^3 = x \] This gives us: \[ x^3 - x = 0 \implies x(x^2 - 1) = 0 \] The solutions are \( x = 0 \), \( x = 1 \), and \( x = -1 \) (but we only consider the first quadrant, so \( x \in [0, 1] \)). The two curves intersect at the points \( (0, 0) \) and \( (1, 1) \). ### Volume Using the Disc/Washer Method When revolving around the \( x \)-axis, we compute the volume using the difference of the discs: \[ V = \pi \int_0^1 \left[(\text{outer radius})^2 - (\text{inner radius})^2\right] \, dx \] The outer radius corresponds to \( y = x \) and the inner radius corresponds to \( y = x^{\frac{1}{3}} \): \[ V = \pi \int_0^1 \left[x^2 - (x^{\frac{1}{3}})^2\right] \, dx = \pi \int_0^1 \left[x^2 - x^{\frac{2}{3}}\right] \, dx \] Now, we compute this integral: \[ = \pi \left[\frac{x^3}{3} - \frac{x^{\frac{5}{3}}}{\frac{5}{3}}\right]_0^1 = \pi \left[\frac{1}{3} - \frac{3}{5}\right] \] \[ = \pi \left[\frac{5}{15} - \frac{9}{15}\right] = \pi \left[-\frac{4}{15}\right] = \frac{4\pi}{15} \] ### Volume Using the Shell Method For the shell method, we revolve around the \( x \)-axis and express the volume as: \[ V = 2\pi \int_0^1 (\text{height})(\text{radius}) \, dy \] Here, we need to express \( x \) as functions of \( y \). From the equations, we have: For \( y = x \): \( x = y \) For \( y = x^{\frac{1}{3}} \): \( x = y^3 \) The height of the shell is the difference between \( y \) values, and the radius is \( y \): \[ V = 2\pi \int_0^1 (y - y^3) \cdot y \, dy = 2\pi \int_0^1 (y^2 - y^4) \, dy \] Now, we compute this integral: \[ = 2\pi \left[\frac{y^3}{3} - \frac{y^5}{5}\right]_0^1 = 2\pi \left[\frac{1}{3} - \frac{1}{5}\right] \] Calculating this gives: \[ = 2\pi \left[\frac{5}{15} - \frac{3}{15}\right] = 2\pi \left[\frac{2}{15}\right] = \frac{4\pi}{15} \] ### Conclusion Thus, both the disc/washer method and the shell method give the same volume of the solid \( S \): \[ \boxed{\frac{4\pi}{15}} \]

preguntas relacionadas

Latest Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad