Let \( R \) be the region bounded by the curves \( y=x \) and \( y=x^{\frac{1}{3}} \). Let \( S \) be the solid generated when \( R \) is revolved about the \( x \)-axis in the first quadrant. Find the volume of \( S \) by both the disc/washer and shell methods. Check that your results agree.
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
To find the volume of the solid \( S \) generated by revolving the region \( R \) bounded by the curves \( y = x \) and \( y = x^{\frac{1}{3}} \) around the \( x \)-axis, we'll start by determining the points of intersection of these curves. Setting \( x = x^{\frac{1}{3}} \), we raise both sides to the power of 3: \[ x^3 = x \] This gives us: \[ x^3 - x = 0 \implies x(x^2 - 1) = 0 \] The solutions are \( x = 0 \), \( x = 1 \), and \( x = -1 \) (but we only consider the first quadrant, so \( x \in [0, 1] \)). The two curves intersect at the points \( (0, 0) \) and \( (1, 1) \). ### Volume Using the Disc/Washer Method When revolving around the \( x \)-axis, we compute the volume using the difference of the discs: \[ V = \pi \int_0^1 \left[(\text{outer radius})^2 - (\text{inner radius})^2\right] \, dx \] The outer radius corresponds to \( y = x \) and the inner radius corresponds to \( y = x^{\frac{1}{3}} \): \[ V = \pi \int_0^1 \left[x^2 - (x^{\frac{1}{3}})^2\right] \, dx = \pi \int_0^1 \left[x^2 - x^{\frac{2}{3}}\right] \, dx \] Now, we compute this integral: \[ = \pi \left[\frac{x^3}{3} - \frac{x^{\frac{5}{3}}}{\frac{5}{3}}\right]_0^1 = \pi \left[\frac{1}{3} - \frac{3}{5}\right] \] \[ = \pi \left[\frac{5}{15} - \frac{9}{15}\right] = \pi \left[-\frac{4}{15}\right] = \frac{4\pi}{15} \] ### Volume Using the Shell Method For the shell method, we revolve around the \( x \)-axis and express the volume as: \[ V = 2\pi \int_0^1 (\text{height})(\text{radius}) \, dy \] Here, we need to express \( x \) as functions of \( y \). From the equations, we have: For \( y = x \): \( x = y \) For \( y = x^{\frac{1}{3}} \): \( x = y^3 \) The height of the shell is the difference between \( y \) values, and the radius is \( y \): \[ V = 2\pi \int_0^1 (y - y^3) \cdot y \, dy = 2\pi \int_0^1 (y^2 - y^4) \, dy \] Now, we compute this integral: \[ = 2\pi \left[\frac{y^3}{3} - \frac{y^5}{5}\right]_0^1 = 2\pi \left[\frac{1}{3} - \frac{1}{5}\right] \] Calculating this gives: \[ = 2\pi \left[\frac{5}{15} - \frac{3}{15}\right] = 2\pi \left[\frac{2}{15}\right] = \frac{4\pi}{15} \] ### Conclusion Thus, both the disc/washer method and the shell method give the same volume of the solid \( S \): \[ \boxed{\frac{4\pi}{15}} \]