Pregunta

Using the disc method, find the volume of the solid formed by revolving the region bounded by \( y = x^2 \) and \( y = 0 \) from \( x = 0 \) to \( x = 2 \) about the x-axis.

Ask by Salazar West. in Portugal
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The volume of the solid is \( \frac{32}{5} \pi \).

Solución

To find the volume of the solid formed by revolving the region bounded by \( y = x^2 \) and \( y = 0 \) from \( x = 0 \) to \( x = 2 \) about the \( x \)-axis using the **disk method**, follow these steps: ### Disk Method Formula When rotating around the \( x \)-axis, the volume \( V \) is given by: \[ V = \pi \int_{a}^{b} [f(x)]^2 \, dx \] where: - \( f(x) \) is the function representing the boundary of the region. - \( [a, b] \) is the interval of integration. ### Applying to the Given Problem 1. **Identify \( f(x) \):** \[ f(x) = x^2 \] 2. **Set up the integral:** \[ V = \pi \int_{0}^{2} (x^2)^2 \, dx = \pi \int_{0}^{2} x^4 \, dx \] 3. **Evaluate the integral:** \[ \int x^4 \, dx = \frac{x^5}{5} + C \] Applying the limits from 0 to 2: \[ \left. \frac{x^5}{5} \right|_{0}^{2} = \frac{2^5}{5} - \frac{0^5}{5} = \frac{32}{5} \] 4. **Multiply by \( \pi \) to get the volume:** \[ V = \pi \times \frac{32}{5} = \frac{32}{5} \pi \] ### Final Answer \[ V = \frac{32}{5} \pi \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the volume of the solid formed by revolving the region bounded by \( y = x^2 \) and \( y = 0 \) from \( x = 0 \) to \( x = 2 \) about the x-axis using the disk method, we start by determining the radius of the disks. The radius at any point \( x \) is given by the value of the function \( y = x^2 \). The volume \( V \) can be calculated using the following integral formula: \[ V = \pi \int_{a}^{b} [f(x)]^2 \, dx \] In this case, \( f(x) = x^2 \), \( a = 0 \), and \( b = 2 \). Thus, we can set up the integral: \[ V = \pi \int_{0}^{2} (x^2)^2 \, dx \] This simplifies to: \[ V = \pi \int_{0}^{2} x^4 \, dx \] Now we compute the integral: \[ \int x^4 \, dx = \frac{x^5}{5} \] Evaluating this from 0 to 2 gives: \[ = \left[ \frac{x^5}{5} \right]_{0}^{2} = \frac{2^5}{5} - \frac{0^5}{5} = \frac{32}{5} \] Finally, we multiply by \( \pi \): \[ V = \pi \cdot \frac{32}{5} \] Thus, the volume of the solid is: \[ V = \frac{32\pi}{5} \] So, the volume of the solid formed by revolving the region bounded by \( y = x^2 \) and \( y = 0 \) from \( x = 0 \) to \( x = 2 \) about the x-axis is \( \frac{32\pi}{5} \) cubic units.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad