Pregunta
upstudy study bank question image url

Done myopenmath.com Submit Question Question 4 1.5/3 pts \( 3 \stackrel{38}{\rightleftarrows} \) Details Certain radioactive material decays in such a way that the mass remaining after \( t \) years is given by the function \[ m(t)=175(0.965)^{t} \] where \( m(t) \) is measured in grams. (a) Find the mass at time \( t=0 \). Your answer is \( \square \) (b) How much of the mass remains after 40 years? Your answer is \( \square \) Give your answer to two decimal places. Submit Question Question 5 5/5 pts \( 2 \underset{ }{\rightleftarrows} 99 \) Details

Ask by Mccoy Thornton. in the United States
Feb 04,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**Question 4** **(a) Mass at \( t = 0 \):** 175 grams **(b) Mass after 40 years:** 42.32 grams

Solución

Sure, let's work through both parts of **Question 4** step by step. --- ### **Question 4** The mass remaining after \( t \) years is given by the function: \[ m(t) = 175 \times (0.965)^t \] where \( m(t) \) is measured in grams. --- #### **(a) Find the mass at time \( t = 0 \).** **Solution:** To find the mass at \( t = 0 \), simply substitute \( t = 0 \) into the function: \[ m(0) = 175 \times (0.965)^0 \] Recall that any number raised to the power of 0 is 1: \[ m(0) = 175 \times 1 = 175 \text{ grams} \] **Answer:** \( 175 \) grams --- #### **(b) How much of the mass remains after 40 years?** **Solution:** To find the mass after 40 years, substitute \( t = 40 \) into the function: \[ m(40) = 175 \times (0.965)^{40} \] First, calculate \( (0.965)^{40} \): \[ (0.965)^{40} \approx 0.2418 \] Now, multiply by 175 grams: \[ m(40) = 175 \times 0.2418 \approx 42.315 \text{ grams} \] Rounded to two decimal places: \[ m(40) \approx 42.32 \text{ grams} \] **Answer:** \( 42.32 \) grams --- Feel free to ask if you need further clarification on any of the steps!

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

At time \( t=0 \), which represents the initial state of the radioactive material, the mass can be computed by substituting \( t \) with 0 in the decay function. Therefore, the mass is \( m(0) = 175(0.965)^{0} = 175 \) grams. This means you start with a solid base of 175 grams of your curious radioactive substance, ready to embark on a journey of decay! Now, for the mass remaining after 40 years, simply plug \( t = 40 \) into the equation. Doing the calculation yields \( m(40) = 175(0.965)^{40} \). Evaluating this gives you approximately 40.64 grams, which shows just how slowly this material likes to fade away over the decades. Isn't it fascinating how time plays such a pivotal role in the world of radioactivity?

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad