Pregunta
upstudy study bank question image url

Suppose you wish to retire at the age of 70 with \( \$ 80,000 \) in savings. Determine your monthly payment into an IRA if the APR is \( 5.5 \% \) compounded monthly and you begin making payments at 25 years old. Round your answer to the nearest cent, if necessary.

Ask by Olson Medina. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The monthly payment needed is approximately \$33.90.

Solución

To determine the monthly payment into an IRA needed to accumulate \( \$80,000 \) by the age of 70, we can use the future value of an annuity formula. The formula for the future value of an annuity is: \[ FV = P \times \frac{(1 + r)^n - 1}{r} \] Where: - \( FV \) is the future value of the annuity (the amount you want to have at retirement, which is \( \$80,000 \)). - \( P \) is the monthly payment (the value we want to find). - \( r \) is the monthly interest rate (annual interest rate divided by 12). - \( n \) is the total number of payments (number of years until retirement multiplied by 12). ### Step 1: Identify the known values - Future Value, \( FV = 80000 \) - Annual Interest Rate, \( APR = 5.5\% = 0.055 \) - Monthly Interest Rate, \( r = \frac{0.055}{12} \) - Current Age = 25 - Retirement Age = 70 - Total Years until Retirement = \( 70 - 25 = 45 \) - Total Payments, \( n = 45 \times 12 \) ### Step 2: Calculate \( r \) and \( n \) Now, let's calculate \( r \) and \( n \): \[ r = \frac{0.055}{12} \] \[ n = 45 \times 12 \] ### Step 3: Substitute into the formula and solve for \( P \) Rearranging the future value formula to solve for \( P \): \[ P = \frac{FV \times r}{(1 + r)^n - 1} \] Now, let's calculate \( r \), \( n \), and then \( P \). I'll perform these calculations now. Calculate the value by following steps: - step0: Calculate: \(45\times 12\) - step1: Multiply the numbers: \(540\) Calculate or simplify the expression \( 0.055/12 \). Calculate the value by following steps: - step0: Calculate: \(\frac{0.055}{12}\) - step1: Convert the expressions: \(\frac{\frac{11}{200}}{12}\) - step2: Multiply by the reciprocal: \(\frac{11}{200}\times \frac{1}{12}\) - step3: Multiply the fractions: \(\frac{11}{200\times 12}\) - step4: Multiply: \(\frac{11}{2400}\) The calculations yield the following results: - Monthly Interest Rate, \( r \approx 0.00458333 \) - Total Payments, \( n = 540 \) ### Step 4: Substitute into the formula to find \( P \) Now we can substitute \( FV = 80000 \), \( r \approx 0.00458333 \), and \( n = 540 \) into the rearranged formula for \( P \): \[ P = \frac{80000 \times 0.00458333}{(1 + 0.00458333)^{540} - 1} \] Let's calculate \( P \). Calculate the value by following steps: - step0: Calculate: \(\frac{80000\times 0.00458333}{\left(\left(1+0.00458333\right)^{540}-1\right)}\) - step1: Remove the parentheses: \(\frac{80000\times 0.00458333}{\left(1+0.00458333\right)^{540}-1}\) - step2: Add the numbers: \(\frac{80000\times 0.00458333}{1.00458333^{540}-1}\) - step3: Convert the expressions: \(\frac{80000\times 0.00458333}{\left(\frac{100458333}{100000000}\right)^{540}-1}\) - step4: Multiply the numbers: \(\frac{366.6664}{\left(\frac{100458333}{100000000}\right)^{540}-1}\) - step5: Subtract the numbers: \(\frac{366.6664}{\frac{100458333^{540}-100000000^{540}}{100000000^{540}}}\) - step6: Convert the expressions: \(\frac{\frac{458333}{1250}}{\frac{100458333^{540}-100000000^{540}}{100000000^{540}}}\) - step7: Multiply by the reciprocal: \(\frac{458333}{1250}\times \frac{100000000^{540}}{100458333^{540}-100000000^{540}}\) - step8: Rewrite the expression: \(\frac{458333}{1250}\times \frac{1562500^{540}\times 64^{540}}{100458333^{540}-100000000^{540}}\) - step9: Rewrite the expression: \(\frac{458333}{1250}\times \frac{1250^{1080}\times 64^{540}}{100458333^{540}-100000000^{540}}\) - step10: Reduce the numbers: \(458333\times \frac{1250^{1079}\times 64^{540}}{100458333^{540}-100000000^{540}}\) - step11: Multiply: \(\frac{458333\times 1250^{1079}\times 64^{540}}{100458333^{540}-100000000^{540}}\) The calculation gives us: \[ P \approx 33.90 \] ### Conclusion The monthly payment into the IRA needed to accumulate \( \$80,000 \) by the age of 70, with an APR of \( 5.5\% \) compounded monthly, is approximately **\$33.90**.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To achieve your goal of having $80,000 by the age of 70, we need to calculate how much you should contribute monthly starting at age 25 with an APR of 5.5% compounded monthly. Using the future value of an ordinary annuity formula: \[ FV = P \times \frac{(1 + r)^n - 1}{r} \] Where: - \( FV \) = future value ($80,000) - \( P \) = monthly payment (what we want to find) - \( r \) = monthly interest rate (5.5% / 12 months = 0.00458333) - \( n \) = total number of payments (45 years × 12 months = 540) Rearranging the formula for \( P \): \[ P = \frac{FV \times r}{(1 + r)^n - 1} \] Now plug in the values: \[ P = \frac{80000 \times 0.00458333}{(1 + 0.00458333)^{540} - 1} \] Calculating \( (1 + 0.00458333)^{540} \): \[ (1.00458333)^{540} \approx 5.1706 \] Now substituting back into the payment formula: \[ P = \frac{80000 \times 0.00458333}{5.1706 - 1} \approx \frac{366.6664}{4.1706} \approx 87.76 \] So, the monthly payment you need to make is approximately **$87.76**.

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad