Pregunta

32. Out of 70 schools 42 of them can be attended by boys and 35 can be attended by girls, If a pupil is selected at random from these schools, find the probability that he/she is from a mixed school. (A) \( \frac{1}{1} \) (B) \( \frac{1}{10} \) (C) \( \frac{1}{6} \) (D) \( \frac{1}{5} \)

Ask by Munoz Burns. in Nigeria
Jan 05,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The probability of selecting a mixed school is \( \frac{1}{10} \).

Solución

To determine the probability that a randomly selected school is a mixed school (attended by both boys and girls), let's use the principle of inclusion-exclusion. 1. **Total number of schools:** 70 2. **Schools attended by boys:** 42 3. **Schools attended by girls:** 35 Let \( M \) represent the number of mixed schools (attended by both boys and girls). Using the inclusion-exclusion principle: \[ \text{Total schools} = \text{Schools attended by boys} + \text{Schools attended by girls} - \text{Mixed schools} \] \[ 70 = 42 + 35 - M \] \[ M = 42 + 35 - 70 = 7 \] Therefore, there are **7 mixed schools** out of a total of **70 schools**. **Probability of selecting a mixed school:** \[ \frac{M}{\text{Total schools}} = \frac{7}{70} = \frac{1}{10} \] **Answer:** **(B) \( \frac{1}{10} \)**

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To determine the number of mixed schools, we can use the principle of inclusion-exclusion. 1. Let \( A \) be the set of schools for boys, and \( B \) the set for girls. 2. \(|A| = 42 \) and \(|B| = 35 \). 3. The total number of schools is 70. Using the formula for inclusion-exclusion: \[ |A \cup B| = |A| + |B| - |A \cap B| \] where \(|A \cup B|\) is the total count of schools (which can be attended by either boys or girls). \[ |A \cup B| = 70 = 42 + 35 - |A \cap B| \] Solving for \(|A \cap B|\): \[ 70 = 77 - |A \cap B| \implies |A \cap B| = 7 \] Thus, there are 7 mixed schools. Now, the probability of selecting a pupil from a mixed school is given by the ratio of mixed schools to the total number of schools: \[ P(\text{mixed}) = \frac{\text{Number of mixed schools}}{\text{Total number of schools}} = \frac{7}{70} = \frac{1}{10} \] So, the answer is: (B) \( \frac{1}{10} \)

Latest Probability Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad