Pregunta
upstudy study bank question image url

In a survey of a group of men, the heights in the \( 20-29 \) age group were normally distributed, with a mean of 67.2 inches and a standard deviation of 2.0 inches. A study paticipant is randomly selected. Complete parts (a) through (d) below. (a) Find the probability that a study participant has a height that is less than 67 inches The probability that the study participant selected at random is less than 67 inches tall is 0.4602 (Round ta fouf decimal places as needed) (b) Find the probability that a study participant has a height that is between 67 and 70 inches The probability that the study participant selected at random is between 67 and 70 inches tall is 0.4590 . (Round to four decimal places as needed) (c) Find the probability that a study participant has a height that is more than 70 inches. The probability that the study participant selected at random is more than 70 inches tall is \( \square \) (Round to four decimal places as needed.)

Ask by Spencer Dunn. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The probability that a study participant is more than 70 inches tall is 0.0808.

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Revisado y aprobado por el equipo de tutoría de UpStudy

Extra Insights

To find the probability that a study participant has a height that is more than 70 inches, we can use the properties of the normal distribution. Since we have the mean (67.2) and standard deviation (2.0), we can calculate the z-score for 70 inches using the formula: \[ z = \frac{(X - \mu)}{\sigma} = \frac{(70 - 67.2)}{2.0} = 0.9 \] Next, we look up this z-score in the standard normal distribution table or use a calculator. The probability corresponding to a z-score of 0.9 is about 0.8176. Since we want the probability of being more than 70 inches tall, we subtract this value from 1: \[ P(X > 70) = 1 - P(Z < 0.9) = 1 - 0.8176 = 0.1824 \] Therefore, the probability that the study participant selected at random is more than 70 inches tall is approximately **0.1824** (rounded to four decimal places). --- The heights of individuals can vary widely, and understanding the normal distribution helps showcase how probabilities can fluctuate around the mean. Fun fact: the classic "68-95-99.7" rule tells us that about 68% of people fall within one standard deviation of the mean, 95% within two, and a whopping 99.7% within three! If you’re fascinated by normal distributions and want to dive deeper, consider exploring additional topics such as the Central Limit Theorem or the applications of normal distributions in real life, like quality control, finance, or even testing! They are everywhere, influencing decisions big and small!

preguntas relacionadas

Latest Statistics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad