(e) Show that: (1) \( \sum_{r=1}^{3}(3 r+4)=\sum_{r=1}^{3} 3 r+\sum_{r=1}^{3} 4 \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
To demonstrate the equality, let's evaluate both sides of the equation step by step. First, we calculate the left side: \[ \sum_{r=1}^{3}(3r+4) = (3 \cdot 1 + 4) + (3 \cdot 2 + 4) + (3 \cdot 3 + 4) = (3 + 4) + (6 + 4) + (9 + 4) = 7 + 10 + 13 = 30. \] Now, for the right side, we break it into two separate sums: 1. Calculate \( \sum_{r=1}^{3} 3r \): \[ \sum_{r=1}^{3} 3r = 3 \cdot 1 + 3 \cdot 2 + 3 \cdot 3 = 3 + 6 + 9 = 18. \] 2. Calculate \( \sum_{r=1}^{3} 4 \): \[ \sum_{r=1}^{3} 4 = 4 + 4 + 4 = 12. \] Now, combine the results from these two sums: \[ \sum_{r=1}^{3} 3r + \sum_{r=1}^{3} 4 = 18 + 12 = 30. \] Therefore, both sides are equal: \[ \sum_{r=1}^{3}(3r+4) = 30 \text{ and } \sum_{r=1}^{3} 3r + \sum_{r=1}^{3} 4 = 30. \] This confirms that the initial statement is true!