A rectangle is to be constructed with 60 meters of wire. The rectangle will have an area of \( A=30 x-x^{2} \), where \( x \) is the length of one side of the rectangle. Using the equation, state the area o the rectangle if one side is 9 meters long. Area \( = \) Enter your next step here square meters
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
To find the area of the rectangle when one side, \( x \), is 9 meters long, simply substitute \( x = 9 \) into the area equation \( A = 30x - x^2 \). Calculating it: \[ A = 30(9) - (9)^2 = 270 - 81 = 189 \] So, the area of the rectangle is \( 189 \) square meters. For your next step, if you want to explore maximizing the area or checking the dimensions for the given wire length while maintaining an area of 30x-x², consider experimenting with other values of x or restructuring the equation to examine the shape's efficiency!