Pregunta
Calculate the two possible values of \( x \) in the following equation: \[ 4\left(9+5 x^{2}\right)=356 \]
Ask by Reid Boone. in Spain
Feb 03,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
The two possible values of \( x \) are 4 and -4.
Solución
To solve the equation:
\[
4\left(9 + 5x^{2}\right) = 356
\]
follow these steps to find the possible values of \( x \):
### Step 1: Divide Both Sides by 4
Start by isolating the expression inside the parentheses:
\[
9 + 5x^{2} = \frac{356}{4}
\]
\[
9 + 5x^{2} = 89
\]
### Step 2: Subtract 9 from Both Sides
\[
5x^{2} = 89 - 9
\]
\[
5x^{2} = 80
\]
### Step 3: Divide Both Sides by 5
\[
x^{2} = \frac{80}{5}
\]
\[
x^{2} = 16
\]
### Step 4: Take the Square Root of Both Sides
\[
x = \sqrt{16} \quad \text{or} \quad x = -\sqrt{16}
\]
\[
x = 4 \quad \text{or} \quad x = -4
\]
### Conclusion
The two possible values of \( x \) that satisfy the equation are:
\[
x = 4 \quad \text{and} \quad x = -4
\]
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Beyond the Answer
To solve the equation \( 4(9 + 5x^2) = 356 \), first simplify the equation by dividing both sides by 4: \[ 9 + 5x^2 = \frac{356}{4} \] Calculating the right side gives: \[ 9 + 5x^2 = 89 \] Next, isolate \( 5x^2 \) by subtracting 9 from both sides: \[ 5x^2 = 89 - 9 \] \[ 5x^2 = 80 \] Now, divide both sides by 5: \[ x^2 = \frac{80}{5} \] \[ x^2 = 16 \] To find the values of \( x \), take the square root of both sides: \[ x = \pm \sqrt{16} \] \[ x = \pm 4 \] Thus, the two possible values of \( x \) are \( x = 4 \) and \( x = -4 \).
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium