Pregunta
Simplify the rational expression. \( \frac{-8 p}{16 p^{2}-40 p}=\square \)
Ask by Reeves Turner. in the United States
Jan 27,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
\[
\frac{-1}{2p - 5}
\]
Solución
To simplify the rational expression:
\[
\frac{-8p}{16p^2 - 40p}
\]
**Step 1: Factor the denominator.**
The denominator \(16p^2 - 40p\) can be factored by taking out the greatest common factor (GCF), which is \(8p\):
\[
16p^2 - 40p = 8p(2p) - 8p(5) = 8p(2p - 5)
\]
**Step 2: Rewrite the expression with the factored denominator.**
\[
\frac{-8p}{16p^2 - 40p} = \frac{-8p}{8p(2p - 5)}
\]
**Step 3: Simplify by canceling the common factors.**
Cancel the \(8p\) in the numerator and the denominator:
\[
\frac{-8p}{8p(2p - 5)} = \frac{-1}{2p - 5}
\]
**Final Answer:**
\[
\boxed{\displaystyle \frac{-1}{2p-5}}
\]
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Extra Insights
To simplify the rational expression \( \frac{-8 p}{16 p^{2}-40 p} \), let's first factor the denominator. The expression \( 16 p^{2} - 40 p \) can be factored by taking out the greatest common factor, which is \( 8p \). So we have: \( 16 p^{2} - 40 p = 8 p (2 p - 5) \). Now, substituting this back into the rational expression gives us: \( \frac{-8 p}{8 p (2 p - 5)} \). Now, we can cancel the common factor of \( 8p \) (as long as \( p \neq 0 \)): \( \frac{-1}{2 p - 5} \). Thus, the simplified expression is: \( \frac{-1}{2 p - 5} \).
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium