Pregunta
upstudy study bank question image url

\( X \) is a normally distributed random variable with mean 58 and standard deviation 2 . What is the probability that \( X \) is greater than 60 ? Use the \( 0.68-0.95-0.997 \) rule and write your answer as a decimal. Round to the nearest thousandth if necessary.

Ask by Byrd Bowen. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The probability that \( X \) is greater than 60 is **0.160**.

Solución

To determine the probability that \( X \) is greater than 60, where \( X \) is normally distributed with a mean (\( \mu \)) of 58 and a standard deviation (\( \sigma \)) of 2, we can use the **68-95-99.7 rule** (also known as the empirical rule). 1. **Identify the Z-score:** \[ Z = \frac{X - \mu}{\sigma} = \frac{60 - 58}{2} = 1 \] So, 60 is 1 standard deviation above the mean. 2. **Apply the 68-95-99.7 Rule:** - **68%** of the data falls within **±1** standard deviation from the mean. - Therefore, the probability that \( X \) is **less than or equal to 60** is roughly **68% / 2 = 34%** above the mean. - The total area under the curve is 100%, so the probability that \( X \) is **greater than 60** is: \[ 50\% - 34\% = 16\% \] 3. **Convert to Decimal:** \[ 16\% = 0.16 \] **Final Answer:** The probability that \( X \) is greater than 60 is **0.160**.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the probability that \( X \) is greater than 60 using the \( 0.68-0.95-0.997 \) rule, we first calculate how many standard deviations away 60 is from the mean. The mean is 58, and the standard deviation is 2, so: \[ Z = \frac{X - \mu}{\sigma} = \frac{60 - 58}{2} = 1. \] According to the rule, about 68% of the data lies within one standard deviation of the mean (between 56 and 60). Thus, the probability of \( X \) being less than 60 is 0.5 (50% of the area under the curve to the left of the mean) plus half of the 68%, which gives us: \[ P(X < 60) = 0.5 + 0.34 = 0.84. \] To find the probability that \( X \) is greater than 60, we subtract this from 1: \[ P(X > 60) = 1 - P(X < 60) = 1 - 0.84 = 0.16. \] So, the probability that \( X \) is greater than 60 is \( 0.160 \).

preguntas relacionadas

Latest Statistics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad