Pregunta
upstudy study bank question image url

Question 15 of \( 15,5 \operatorname{tep} 1 \) of 1 11/15 Correct Suppose you wish to retire at the age of 60 with \( \$ 80,000 \) in savings. Determine your monthly payment into an IPA if the APR is \( 5.5 \% \) compounded monthly and you begin making payments at 30 years old. Round your answer to the nearest cent, if necessary. Formulas Present Value with Compound \( \quad P V=\frac{A}{\left(1+\frac{r}{n}\right)^{2 m}} \) Annuity Payment Amount Future Value of an Annuity \( \mathrm{PMT}=\mathrm{FV} \cdot \frac{\left(\frac{r}{n}\right)}{\left[\left(1+\frac{r}{n}\right)^{e t}-1\right]} \) \[ \mathrm{FV}=\mathrm{PMT} \cdot \frac{\left[\left(1+\frac{r}{n}\right)^{n}-1\right]}{\left(\frac{r}{n}\right)} \] Keypad

Ask by Barber Fowler. in the United States
Feb 04,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

You need to make a monthly payment of approximately \$82.14 to reach \$80,000 by age 60.

Solución

To determine the **monthly payment** needed to accumulate **\$80,000** by the age of **60**, starting at **30 years old**, with an **APR of 5.5%** compounded monthly, we'll use the **Future Value of an Annuity** formula. ### Given: - **Future Value (FV):** \$80,000 - **Annual Percentage Rate (APR):** 5.5% - **Compounded Monthly:** \( n = 12 \) times per year - **Investment Period:** 30 years (\( t = 30 \)) - **Total Number of Payments (N):** \( 30 \times 12 = 360 \) months ### Formula: \[ \text{FV} = \text{PMT} \times \frac{\left(1 + \frac{r}{n}\right)^{nt} - 1}{\frac{r}{n}} \] Where: - \( \text{PMT} \) = Monthly payment - \( r \) = Annual interest rate (decimal) - \( n \) = Number of compounding periods per year - \( t \) = Number of years ### Steps to Calculate PMT: 1. **Convert APR to Monthly Rate:** \[ \frac{r}{n} = \frac{5.5\%}{12} = 0.0045833333 \] 2. **Calculate \(\left(1 + \frac{r}{n}\right)^{nt}\):** \[ \left(1 + 0.0045833333\right)^{360} \approx 5.4608 \] 3. **Rearrange the Future Value Formula to Solve for PMT:** \[ \text{PMT} = \frac{\text{FV} \times \frac{r}{n}}{\left(1 + \frac{r}{n}\right)^{nt} - 1} \] 4. **Plug in the Values:** \[ \text{PMT} = \frac{80,000 \times 0.0045833333}{5.4608 - 1} \approx \frac{366.6666664}{4.4608} \approx 82.14 \] ### **Final Answer:** You need to make a **monthly payment of approximately \$82.14** into the investment account to reach your retirement savings goal of \$80,000 by age 60.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To determine your monthly payment into an Individual Retirement Account (IRA), we'll use the future value of an annuity formula. Since you plan to save \( \$80,000 \) for retirement at age 60, with an APR of \( 5.5\% \) compounded monthly, you have \( 30 \) years (\( 360 \) months) to make these payments. Substituting \( FV = 80,000 \), \( r = 0.055 \), and \( n = 12 \) into the formula will let you calculate the monthly payment (PMT). Realistically, calculating these payments ensures you are financially prepared for your golden years. Doing it early can relieve financial stress later when you're ready to enjoy your retirement. Remember to regularly check your investment strategy as interest rates and personal circumstances change!

preguntas relacionadas

Latest Economics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad