Pregunta
If a ring costs a jeweler \( \$ 1400 \), at what price should it be sold to yield a profit of \( 50 \% \) on the selling price? \$ \( \square \)
Ask by Moreno Ford. in the United States
Jan 24,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
The ring should be sold for \$2,800 to achieve a 50% profit on the selling price.
Solución
To determine the selling price that yields a **50% profit on the selling price**, let's break down the problem:
1. **Definitions:**
- **Cost Price (C):** \$1,400
- **Selling Price (S):** The price we need to find.
- **Profit (P):** \( S - C \)
2. **Understanding the Profit Percentage:**
- A **50% profit on the selling price** means:
\[
P = 0.5 \times S
\]
- Substituting the profit definition:
\[
S - C = 0.5 \times S
\]
\[
S - 1,400 = 0.5S
\]
3. **Solving for \( S \):**
\[
S - 0.5S = 1,400
\]
\[
0.5S = 1,400
\]
\[
S = \frac{1,400}{0.5} = 2,800
\]
4. **Verification:**
- **Profit:** \( 2,800 - 1,400 = 1,400 \)
- **Profit Percentage on Selling Price:** \( \frac{1,400}{2,800} \times 100\% = 50\% \)
**Final Answer:** The ring should be sold for **\$2,800** to achieve a 50% profit on the selling price.
**Answer:** $\boxed{2800}$
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Beyond the Answer
To calculate the selling price that will yield a profit of \( 50 \% \) on the selling price, let's denote the selling price as \( x \). The jeweler needs to cover the cost of the ring, which is \( \$ 1400 \), and make a profit that is \( 50 \% \) of \( x \). This means the equation can be set up as follows: \( 1400 = x - 0.5x \) This simplifies to: \( 1400 = 0.5x \) Now, solving for \( x \): \( x = \frac{1400}{0.5} = 2800 \) Therefore, the ring should be sold for \( \$ 2800 \) to yield a profit of \( 50 \% \) on the selling price.
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium