Pregunta
upstudy study bank question image url

(1) \( 5 x+6=2 x+15 \) (2) \( 7 x-4=20+3 x \) (3) \( 2 x+15=43-5 x \) (4) \( 3+4 x=9 x+13 \) (5) \( 2 x-10=44+8 x \) (6) \( -7 x-2=24-9 x \) (7) \( 27-11 x=x-33 \) (B) \( 21 x+6=17 x-26 \) (9) \( 11 x=8 x-6 \) (10) \( -x-29=13+2 x \) (11) \( -18+5 x=-12 x-1 \) (12) \( -9 x-21=35-x \) (13) \( 7 x-2=-2 x-29 \) (14) \( 36+15 x=17 x \) (15) \( -15-4 x=6-3 x \) (16) \( 12 x-9=8 x-37 \) (17) \( -5 x+40=6 x-70 \) (18) \( -x-2=1-2 x \)

Ask by Chan Powell. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Here are the solutions to the equations: 1. \( x = 3 \) 2. \( x = 6 \) 3. \( x = 4 \) 4. \( x = -2 \) 5. \( x = -9 \) 6. \( x = 13 \) 7. \( x = 5 \) 8. \( x = -8 \) 9. \( x = -2 \) 10. \( x = -14 \) 11. \( x = 1 \) 12. \( x = -7 \) 13. \( x = -3 \) 14. \( x = 18 \) 15. \( x = -21 \) 16. \( x = -7 \) 17. \( x = 10 \) 18. \( x = 3 \)

Solución

Sure, let's solve each of the given linear equations step by step. --- ### **(1) \( 5x + 6 = 2x + 15 \)** \[ \begin{align*} 5x + 6 &= 2x + 15 \\ 5x - 2x &= 15 - 6 \\ 3x &= 9 \\ x &= \frac{9}{3} \\ x &= 3 \end{align*} \] **Solution:** \( x = 3 \) --- ### **(2) \( 7x - 4 = 20 + 3x \)** \[ \begin{align*} 7x - 3x &= 20 + 4 \\ 4x &= 24 \\ x &= \frac{24}{4} \\ x &= 6 \end{align*} \] **Solution:** \( x = 6 \) --- ### **(3) \( 2x + 15 = 43 - 5x \)** \[ \begin{align*} 2x + 5x &= 43 - 15 \\ 7x &= 28 \\ x &= \frac{28}{7} \\ x &= 4 \end{align*} \] **Solution:** \( x = 4 \) --- ### **(4) \( 3 + 4x = 9x + 13 \)** \[ \begin{align*} 3 - 13 &= 9x - 4x \\ -10 &= 5x \\ x &= \frac{-10}{5} \\ x &= -2 \end{align*} \] **Solution:** \( x = -2 \) --- ### **(5) \( 2x - 10 = 44 + 8x \)** \[ \begin{align*} 2x - 8x &= 44 + 10 \\ -6x &= 54 \\ x &= \frac{54}{-6} \\ x &= -9 \end{align*} \] **Solution:** \( x = -9 \) --- ### **(6) \( -7x - 2 = 24 - 9x \)** \[ \begin{align*} -7x + 9x &= 24 + 2 \\ 2x &= 26 \\ x &= \frac{26}{2} \\ x &= 13 \end{align*} \] **Solution:** \( x = 13 \) --- ### **(7) \( 27 - 11x = x - 33 \)** \[ \begin{align*} 27 + 33 &= x + 11x \\ 60 &= 12x \\ x &= \frac{60}{12} \\ x &= 5 \end{align*} \] **Solution:** \( x = 5 \) --- ### **(B) \( 21x + 6 = 17x - 26 \)** \[ \begin{align*} 21x - 17x &= -26 - 6 \\ 4x &= -32 \\ x &= \frac{-32}{4} \\ x &= -8 \end{align*} \] **Solution:** \( x = -8 \) --- ### **(9) \( 11x = 8x - 6 \)** \[ \begin{align*} 11x - 8x &= -6 \\ 3x &= -6 \\ x &= \frac{-6}{3} \\ x &= -2 \end{align*} \] **Solution:** \( x = -2 \) --- ### **(10) \( -x - 29 = 13 + 2x \)** \[ \begin{align*} -x - 2x &= 13 + 29 \\ -3x &= 42 \\ x &= \frac{42}{-3} \\ x &= -14 \end{align*} \] **Solution:** \( x = -14 \) --- ### **(11) \( -18 + 5x = -12x - 1 \)** \[ \begin{align*} 5x + 12x &= -1 + 18 \\ 17x &= 17 \\ x &= \frac{17}{17} \\ x &= 1 \end{align*} \] **Solution:** \( x = 1 \) --- ### **(12) \( -9x - 21 = 35 - x \)** \[ \begin{align*} -9x + x &= 35 + 21 \\ -8x &= 56 \\ x &= \frac{56}{-8} \\ x &= -7 \end{align*} \] **Solution:** \( x = -7 \) --- ### **(13) \( 7x - 2 = -2x - 29 \)** \[ \begin{align*} 7x + 2x &= -29 + 2 \\ 9x &= -27 \\ x &= \frac{-27}{9} \\ x &= -3 \end{align*} \] **Solution:** \( x = -3 \) --- ### **(14) \( 36 + 15x = 17x \)** \[ \begin{align*} 36 &= 17x - 15x \\ 36 &= 2x \\ x &= \frac{36}{2} \\ x &= 18 \end{align*} \] **Solution:** \( x = 18 \) --- ### **(15) \( -15 - 4x = 6 - 3x \)** \[ \begin{align*} -4x + 3x &= 6 + 15 \\ -x &= 21 \\ x &= -21 \end{align*} \] **Solution:** \( x = -21 \) --- ### **(16) \( 12x - 9 = 8x - 37 \)** \[ \begin{align*} 12x - 8x &= -37 + 9 \\ 4x &= -28 \\ x &= \frac{-28}{4} \\ x &= -7 \end{align*} \] **Solution:** \( x = -7 \) --- ### **(17) \( -5x + 40 = 6x - 70 \)** \[ \begin{align*} -5x - 6x &= -70 - 40 \\ -11x &= -110 \\ x &= \frac{-110}{-11} \\ x &= 10 \end{align*} \] **Solution:** \( x = 10 \) --- ### **(18) \( -x - 2 = 1 - 2x \)** \[ \begin{align*} -x + 2x &= 1 + 2 \\ x &= 3 \end{align*} \] **Solution:** \( x = 3 \) --- ### **Summary of Solutions:** 1. \( x = 3 \) 2. \( x = 6 \) 3. \( x = 4 \) 4. \( x = -2 \) 5. \( x = -9 \) 6. \( x = 13 \) 7. \( x = 5 \) 8. \( x = -8 \) *(Originally labeled as (B))* 9. \( x = -2 \) 10. \( x = -14 \) 11. \( x = 1 \) 12. \( x = -7 \) 13. \( x = -3 \) 14. \( x = 18 \) 15. \( x = -21 \) 16. \( x = -7 \) 17. \( x = 10 \) 18. \( x = 3 \) --- Feel free to reach out if you have any further questions or need additional explanations!

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To solve these equations, it can be helpful to remember some key algebraic strategies. One effective method is to isolate the variable on one side by performing the same operation on both sides of the equation. Always keep an eye out for opportunities to combine like terms, which simplifies your journey to the solution! Also, a common mistake when solving linear equations is forgetting to change the sign when moving a term from one side to the other. For instance, if you subtract \(2x\) from both sides, remember that it effectively changes its sign on the other side. Double-checking your signs can save you from unnecessary headaches later on!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad