Write the exponential equation in logarithmic form. For example, the logarithmic form of \( 2^{3}=8 \) is \( \log _{2}(8)=3 \). \[ \begin{array}{l}32^{2 / 5}=4 \\ \text { Need Help? } \text { Read It } \text { Watch it }\end{array} \]
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
To convert the exponential equation \( 32^{2/5} = 4 \) into logarithmic form, start by identifying the base, the result, and the exponent. The base is 32, the result is 4, and the exponent becomes the logarithm value. Therefore, the logarithmic form is \( \log_{32}(4) = \frac{2}{5} \). This transformation is crucial in understanding relationships between different forms of expressions. For instance, in mathematics, logarithmic and exponential forms offer various tools for solving equations and analyzing functions, making them both powerful and essential for higher-level learning!