Pregunta
If \( w=\sqrt{7-x} \) then for what value(s) of \( x \) is \( w \) non-real?
Ask by Lawson Klein. in South Africa
Feb 06,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
\( w \) is non-real when \( x > 7 \).
Solución
To determine for which values of \( x \) the expression \( w = \sqrt{7 - x} \) is non-real, we need to analyze the conditions under which the square root of a real number becomes non-real.
### Understanding the Square Root
The square root function \( \sqrt{a} \) is real **only** if the argument \( a \) is **non-negative** (\( a \geq 0 \)). If \( a \) is negative (\( a < 0 \)), the square root becomes non-real (i.e., it involves imaginary numbers).
### Applying to \( w = \sqrt{7 - x} \)
For \( w \) to be **non-real**:
\[
7 - x < 0
\]
Solving for \( x \):
\[
7 < x \quad \text{or} \quad x > 7
\]
### Conclusion
The expression \( w = \sqrt{7 - x} \) is non-real for all real numbers \( x \) that are **greater than 7**.
### Final Answer
All real numbers exceeding seven. In other words, w is non-real for every real x with x > 7.
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Extra Insights
For the expression \( w = \sqrt{7 - x} \) to be non-real, the value inside the square root must be negative. Therefore, we set up the inequality: \[ 7 - x < 0 \] Solving for \( x \), we add \( x \) to both sides: \[ 7 < x \] or equivalently, \[ x > 7 \] Thus, \( w \) is non-real for all values of \( x \) that are greater than 7.
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium