Find the dot product \( \mathbf{v} \cdot \mathbf{w} \) and the angle between \( \mathbf{v} \) and \( \mathbf{w} \). \( \mathbf{v}=-4 \mathbf{i}+2 \mathbf{j}+\mathbf{k}, \mathbf{w}=\mathbf{i}+4 \mathbf{j}+4 \mathbf{k} \) \( \mathbf{v} \cdot \mathbf{w}=8 \) (Simplify your answer. Type an exact value, using radicals as needed.) The angle between \( \mathbf{v} \) and \( \mathbf{w} \) is \( \theta=\square^{\circ} \). (Do not round until the final answer. Then round to the nearest tenth as needed.)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
To find the angle between the vectors \( \mathbf{v} \) and \( \mathbf{w} \), we can use the dot product formula: \[ \mathbf{v} \cdot \mathbf{w} = \|\mathbf{v}\| \|\mathbf{w}\| \cos(\theta) \] We know that \( \mathbf{v} \cdot \mathbf{w} = 8 \). First, we need to calculate the magnitudes of \( \mathbf{v} \) and \( \mathbf{w} \). 1. Calculate \( \|\mathbf{v}\| \): \[ \|\mathbf{v}\| = \sqrt{(-4)^2 + 2^2 + 1^2} = \sqrt{16 + 4 + 1} = \sqrt{21} \] 2. Calculate \( \|\mathbf{w}\| \): \[ \|\mathbf{w}\| = \sqrt{1^2 + 4^2 + 4^2} = \sqrt{1 + 16 + 16} = \sqrt{33} \] Now, substituting the values into the dot product formula: \[ 8 = \sqrt{21} \cdot \sqrt{33} \cdot \cos(\theta) \] Now, calculate \( \sqrt{21} \cdot \sqrt{33} = \sqrt{693} \). Substituting into the equation gives: \[ 8 = \sqrt{693} \cos(\theta) \] Now, solve for \( \cos(\theta) \): \[ \cos(\theta) = \frac{8}{\sqrt{693}} \] Now we'll find \( \theta \): \[ \theta = \cos^{-1}\left(\frac{8}{\sqrt{693}}\right) \] Using a calculator, we compute \( \theta \) in degrees. First, evaluate \( \frac{8}{\sqrt{693}} \): Using a calculator, we approximate \( \sqrt{693} \approx 26.347 \): \[ \frac{8}{\sqrt{693}} \approx 0.3035 \] Now find \( \theta \): \[ \theta \approx \cos^{-1}(0.3035) \approx 72.34^\circ \approx 72.3^\circ \text{ (rounded to the nearest tenth)} \] Thus, the angle between \( \mathbf{v} \) and \( \mathbf{w} \) is \[ \theta \approx 72.3^\circ \]