Pregunta
upstudy study bank question image url

Find the greatest common factor. \[ 2 a^{3}, 7 a^{2} \] Write your answer as a constant times a product of single variables rasised to exponents.

Ask by Moreno Edwards. in the United States
Feb 02,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The greatest common factor is \( a^{2} \).

Solución

To find the greatest common factor (GCF) of the two terms \( 2a^{3} \) and \( 7a^{2} \), follow these steps: 1. **Find the GCF of the coefficients:** - The coefficients are 2 and 7. - The GCF of 2 and 7 is **1** since 2 and 7 are both prime numbers and have no common factors other than 1. 2. **Find the GCF of the variable parts:** - The variable parts are \( a^3 \) and \( a^2 \). - The GCF is the variable raised to the lowest power present in both terms. - Therefore, the GCF of \( a^3 \) and \( a^2 \) is \( a^2 \). 3. **Combine the GCFs:** - Multiply the GCF of the coefficients by the GCF of the variable parts. - \( 1 \times a^2 = a^2 \). So, the greatest common factor of \( 2a^3 \) and \( 7a^2 \) is: \[ a^{2} \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the greatest common factor (GCF) of the two terms \(2 a^{3}\) and \(7 a^{2}\), we analyze both the numerical coefficients and the variable parts. The coefficients are 2 and 7, and their GCF is 1, as they don't share any common factors. For the variable part, \(a^{3}\) and \(a^{2}\), the GCF is \(a^{2}\) since it is the lower exponent. Therefore, combining these we have: \[ GCF = 1 \cdot a^{2} = a^{2} \] Our greatest common factor is \(a^{2}\). And just like that, we’ve uncovered the GCF without any fuss! This GCF might be simple, but it can power up your polynomial equations like a true superhero—making calculations neat and tidy. When tackling similar problems, remember to break things down into smaller pieces: focus on coefficients first, then tackle the variables. It makes finding the GCF smoother than a well-mixed smoothie! Just watch out for those tricky coefficients that might seem related but aren't!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad