Which expression would use the product rule, adding the exponents? (1 point) \( 3^{3} \cdot 3^{3} \) \( \left(3^{3}\right)^{3} \) \( 3^{3}+3^{3} \) \( \frac{3^{3}}{3^{3}} \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
To determine which expression uses the product rule where you add the exponents, we look for a scenario of multiplying the same base. The expression \( 3^{3} \cdot 3^{3} \) fits this perfectly! When you multiply numbers with the same base, you simply add their exponents, so \( 3^{3} \cdot 3^{3} = 3^{3+3} = 3^{6} \). The other options show different operations: \( (3^{3})^{3} \) applies the power of a power rule (multiply exponents), \( 3^{3}+3^{3} \) represents addition, and \( \frac{3^{3}}{3^{3}} \) uses the quotient rule (subtract exponents). So, the winner here is definitely \( 3^{3} \cdot 3^{3} \)!