Pregunta
The function below has at least one rational zero.
Use this fact to find all zeros of the function.
If there is more than one zero, separate them with commas. Write exact values, not decimal approximations.
Use this fact to find all zeros of the function.
Ask by Simpson Marshall. in the United States
Mar 31,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
The zeros of the function are
,
,
, and
.
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Como
Mind Expander
To find the rational zeros of the function
, we can apply the Rational Root Theorem. This theorem suggests that any rational zero, in the form
, has
as a factor of the constant term (-14), and
as a factor of the leading coefficient (3).
The factors of -14 are: ±1, ±2, ±7, ±14, and the factors of 3 are: ±1, ±3. So, the possible rational zeros are: ±1, ±2, ±7, ±14, ±1/3, ±2/3, ±7/3, ±14/3.
Testing these values, we find that
is a root:
Now, we can factor
using synthetic division by
:
Next, we need to find the roots of
. We can apply the Rational Root Theorem again. By testing
, we found:
Trying
:
Then attempting
leads to another root:
Using synthetic division again, we can simplify this polynomial.
After calculations, the final factorization leads to:
The zeros of the function are:
Thus, the exact values of the zeros are:
preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium