Pregunta
- Given that
(i) Show that
is a factor of
.
(ii) Factorise
completely.
(iii) Hence, state the number of real solutions for
.
(i) Show that
(ii) Factorise
(iii) Hence, state the number of real solutions for
Ask by Parsons Reeves. in Singapore
Mar 31,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
(i)
is a factor of
because
.
(ii)
.
(iii)
There are 4 real solutions for :
.
There are 4 real solutions for
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Como
Extra Insights
To show that
is a factor of
, we can use the Factor Theorem. First, we find the root corresponding to
, which gives
. Plugging this value into
:
Calculating this gives:
Since
,
is indeed a factor.
Next, we perform polynomial long division of
by
:
- Divide
by to get . - Multiply
by to get . - Subtract this from
to get . - Divide
by to get . - Multiply
by to get . - Subtract to obtain
. - Divide
by to get . - Multiply to get
and subtract to find a remainder of .
Thus, we have:
Now, we factor
:
Therefore, the complete factorization is:
Finally, for the equation
, we make a substitution
. This transforms our equation into
. We know from our earlier factorization of
that it has factors that lead to solutions
,
, and
.
Since
and
gives no real solutions (as squares cannot be negative), we look for the non-negative roots:
-
gives (2 solutions). -
gives (2 solutions).
Adding these, we find there are 4 real solutions for the original equation.
preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium