Pregunta
upstudy study bank question image url

5.2.2 If \( k(x)=-f(x) \), write down the equation of \( k \). 5.2.3 If \( f(x)=3^{x-1}+2 \) is translated to \( t \) such that \( t(x)= \) (a) Determine \( t^{-1} \) in the form of \( y=\ldots \) (b) Describe the transformation from \( f \) to \( t \).

Ask by Pope Ford. in South Africa
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**5.2.2** \( k(x) = -f(x) \) **5.2.3 (a)** \( t^{-1}(x) = \log_3(x - 2) + 1 \) **5.2.3 (b)** The function \( t(x) \) is obtained by shifting \( f(x) = 3^{x-1} + 2 \) **1 unit to the right** and **2 units up**.

Solución

Sure, let's address each part of your question step by step. --- ### **5.2.2 If \( k(x) = -f(x) \), write down the equation of \( k \).** **Answer:** Given that \( k(x) \) is defined as the negative of \( f(x) \), the equation for \( k(x) \) is simply: \[ k(x) = -f(x) \] *This means that for every value of \( x \), \( k(x) \) is the opposite of \( f(x) \). If \( f(x) \) outputs a positive value, \( k(x) \) will output a negative value of the same magnitude, and vice versa.* --- ### **5.2.3 If \( f(x) = 3^{x-1} + 2 \) is translated to \( t \) such that \( t(x) = \ldots \)** Let's assume that the translation involves transforming \( f(x) \) to \( t(x) \) by shifting it horizontally and/or vertically. Without additional specifics about the translation, we'll consider the standard form provided. #### **(a) Determine \( t^{-1} \) in the form of \( y = \ldots \)** **Answer:** To find the inverse function \( t^{-1}(x) \), we need to solve for \( y \) in terms of \( x \) such that: \[ y = t(x) = 3^{x-1} + 2 \] **Steps to Find the Inverse:** 1. **Start with the original equation:** \[ y = 3^{x-1} + 2 \] 2. **Subtract 2 from both sides:** \[ y - 2 = 3^{x-1} \] 3. **Apply the logarithm with base 3 to both sides to solve for \( x \):** \[ \log_3(y - 2) = x - 1 \] 4. **Add 1 to both sides to isolate \( x \):** \[ x = \log_3(y - 2) + 1 \] 5. **Swap \( x \) and \( y \) to express the inverse function:** \[ t^{-1}(x) = \log_3(x - 2) + 1 \] **So, the inverse function is:** \[ t^{-1}(x) = \log_3(x - 2) + 1 \] #### **(b) Describe the transformation from \( f \) to \( t \).** **Answer:** Given the original function \( f(x) = 3^{x-1} + 2 \), the transformation to \( t(x) \) involves the following steps: 1. **Horizontal Shift:** - The term \( x - 1 \) inside the exponent indicates a **horizontal shift to the right by 1 unit**. This means that the graph of the exponential function \( 3^x \) is shifted rightward along the x-axis. 2. **Vertical Shift:** - The \( +2 \) outside the exponent signifies a **vertical shift upward by 2 units**. This moves the entire graph of the function upward along the y-axis. **Summary of the Transformation:** - **Right Shift:** 1 unit - **Upward Shift:** 2 units *These combined shifts result in the graph of \( t(x) \) being positioned 1 unit to the right and 2 units above the original graph of \( 3^x \).* --- ### **Visual Representation** To better understand the transformation, here's a simplified visual representation: - **Original Function \( 3^x \):** Starts at \( (0, 1) \). - **After Shifting Right by 1:** Becomes \( 3^{x-1} \), starting at \( (1, 1) \). - **After Shifting Up by 2:** Becomes \( 3^{x-1} + 2 \), starting at \( (1, 3) \). --- Feel free to ask if you need further clarification on any of these steps!

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find \( k(x) \), substitute \( f(x) \) into the equation \( k(x) = -f(x) \). Thus, \( k(x) = -\left(3^{x-1}+2\right) = -3^{x-1} - 2 \). For the transformation \( t(x) \), if \( f(x) = 3^{x-1}+2 \) is translated up by a vertical shift of \( m \) units (let’s say \( t(x) = 3^{x-1}+2+m \)), then to find the inverse, set \( y = t(x) \) yielding \( y = 3^{x-1} + 2 + m \). Rearranging gives \( 3^{x-1} = y - 2 - m \), and by taking logarithms and solving for \( x \), we eventually find \( t^{-1}(y) = \log_3(y - 2 - m) + 1 \). The transformation from \( f \) to \( t \) involves a vertical shift, moving the entire graph of \( f(x) \) either up or down depending on the value of \( m \). This means all output values increase (if \( m > 0 \)) or decrease (if \( m < 0 \)) uniformly, altering the graph's height without changing its general shape.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad