\( \begin{array}{ll}\text { c) }\left(x^{2} y z^{-1}\right)^{3} \times\left(x^{4} y z^{3}\right)^{-1} & \text { d) }\left(\frac{1}{x y^{2}}\right)^{-2} \times\left(\frac{x^{3}}{y^{2}}\right)^{-1} \\ \begin{array}{ll}\frac{a^{2} b^{-2} c^{3}}{a b^{-1} c^{2}} \times \frac{\left(a^{2} b^{-2} c\right)^{-1}}{a^{-1} b^{2} c^{3}} \div \frac{a b}{c^{4}} & \text { f) } \frac{f g}{h^{3}} \times\left(\frac{h^{4}}{f^{2} g}\right)^{-2} \div \frac{a^{0} f^{2} g^{-2}}{h^{-3}} \\ \text { e) }\left(\frac{1}{x}+\frac{x}{y}\right)^{-2} & \text { h) } \frac{27^{x+1} \cdot 18^{x-1}}{36^{3-x}} \\ \text { g) } \frac{8^{2 x+2}+4^{3 x-1}}{2^{3 x}} & \text { j) } \frac{54^{x+1} 36^{x-1}}{24^{2 x-3}}\end{array}\end{array} \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
Did you know that the rules for combining exponents date back to the work of Greek mathematicians such as Euclid? They laid foundational principles for mathematical notation that are still used today! This early work was crucial in developing algebra, paving the way for later mathematicians like Isaac Newton and Carl Friedrich Gauss, who expanded on these ideas to tackle more complex equations. In modern life, exponents and algebra aren't just confined to textbooks! They're key players in various fields, including engineering, economics, and computer science. For instance, understanding exponent rules is essential for calculating compound interest in finance, optimizing algorithms in programming, or even how technology impacts population growth models. So next time you're grappling with a math problem, remember it's all about solving real-world puzzles!