\( \begin{array}{ll}\text { c) } 4^{3 x-1}=1 & \text { d) } 5^{x}+5^{x-1}=30\end{array} \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
To solve \( 4^{3x-1} = 1 \), we can express 1 as \( 4^0 \). This gives us \( 4^{3x-1} = 4^0 \). Since the bases are the same, we can set the exponents equal: \( 3x - 1 = 0 \). Solving this gives \( 3x = 1 \), so \( x = \frac{1}{3} \). For the equation \( 5^x + 5^{x-1} = 30 \), we can rewrite \( 5^{x-1} \) as \( \frac{5^x}{5} \). This leads to the equation \( 5^x + \frac{5^x}{5} = 30 \), or equivalently \( 5^x \left(1 + \frac{1}{5}\right) = 30 \). Simplifying gives \( 5^x \cdot \frac{6}{5} = 30 \). Thus, \( 5^x = 30 \cdot \frac{5}{6} = 25 \). Taking the logarithm or recognizing that \( 5^2 = 25 \), we find \( x = 2 \).